Show that, for any complex number z, zz = |z|
2
, z + z = 2Re(z) and Re(z) ≤ |z|. Hence
show that
i. |z1 + z2|
2 = |z1|
2 + |z2|
2 + 2Re(z1z2),
ii. |z1 + z2| ≤ |z1| + |z2|,
where Re(z) is the real part of z and z the conjugate of z. [26 marks]
(b) If z1 = 1 + 2i, find the set of values of z2 for which
(i) |z1 + z2| = |z1| + |z2| (ii) |z1 + z2| = |z1| − |z2|.
1
Expert's answer
2020-06-30T17:19:40-0400
As ∣z∣=x2+y2 where z=x+iy,zˉ=x−iy, then z⋅zˉ=x2+y2=∣z∣2 and
z+zˉ=2x=2Re(z) where x=Re(z) , then Re(z)≤∣z∣
i. ∣z1+z2∣=(z1+z2)(z1ˉ+z2ˉ)=z1z1ˉ+z1z2ˉ+z2z1ˉ+z2z2ˉ=
=∣z1∣2+∣z2∣2+2Re(z1z2)
ii. Since the sum of two complex numbers can be represented as the third side of a triangle then
∣z1+z2∣≤∣z1∣+∣z2∣
b) Using the triangle rule
i. If ∣z1+z2∣=∣z1∣+∣z2∣ then z2=k(1+2i) where k>0,k∈R
ii. If ∣z1+z2∣=∣z1∣+∣z2∣ then z2=−k(1+2i) where k>0,k∈R
Comments
Leave a comment