Im(z+9z)=0.......z=x+iyIm(\frac{z+9}{z})= 0.......z = x+iyIm(zz+9)=0.......z=x+iy
Im(x+iy+9x+iy)=0Im (\frac{x+iy+9}{x+iy}) =0Im(x+iyx+iy+9)=0
Im(1+9x+iy)=0Im(1+ \frac{9}{x+iy}) =0Im(1+x+iy9)=0
Im(1+9x+iy×x−iyx−iy)=0Im(1+ \frac{9}{x+iy}\times \frac{x-iy} {x-iy}) =0Im(1+x+iy9×x−iyx−iy)=0
Im(1+9×(x−iy)x2+y2)=0Im(1+ \frac{9\times (x-iy)}{x^2+y^2}) =0Im(1+x2+y29×(x−iy))=0
Im(1+9x−9iyx2+y2)=0Im(1+\frac {9x-9iy} {x^2+y^2}) =0Im(1+x2+y29x−9iy)=0
−9yx2+y2=0\frac{-9y}{x^2+y^2} = 0x2+y2−9y=0
y=0,z=x=Re(z)y=0, z=x=Re(z)y=0,z=x=Re(z)
Answer :
z=x=Re(z)z=x=Re(z)z=x=Re(z)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments