Question #120442
z^3=6 ( cos ( π/3 ) + i sin ( π/63 ) )
1
Expert's answer
2020-06-08T19:05:16-0400

According to the De Moivre's Formula, all n-th roots of a complex number r(cos(θ)+isin(θ))r(\cos(\theta)+i\sin(\theta))are given by rn(cos(θ+2πkn)+isin(θ+2πkn)),\sqrt[n]{r}\big(\cos({\theta+2\pi k\over n})+i\sin({\theta+2\pi k\over n})\big), k=0,1,2,...,n1k=0,1,2,...,n-1

We have that r=6,θ=π3,n=3.r=6, \theta=\dfrac{\pi}{3}, n=3.

k=0:k=0:


z1=63(cos(π3+03)+isin(π3+03))=z_1=\sqrt[3]{6}\big(\cos({{\pi\over 3}+0\over 3})+i\sin({{\pi\over 3}+0\over 3})\big)==63(cos(π9)+isin(π9))==\sqrt[3]{6}\big(\cos({\pi\over 9})+i\sin({\pi\over 9})\big)==63cos(π9)+i63sin(π9)=\sqrt[3]{6}\cos({\pi\over 9})+i\sqrt[3]{6}\sin({\pi\over 9})

k=1:k=1:


z2=63(cos(π3+2π3)+isin(π3+2π3))=z_2=\sqrt[3]{6}\big(\cos({{\pi\over 3}+2\pi\over 3})+i\sin({{\pi\over 3}+2\pi\over 3})\big)==63(cos(7π9)+isin(7π9))==\sqrt[3]{6}\big(\cos({7\pi\over 9})+i\sin({7\pi\over 9})\big)==63cos(2π9)+i63sin(2π9)=-\sqrt[3]{6}\cos({2\pi\over 9})+i\sqrt[3]{6}\sin({2\pi\over 9})

k=2:k=2:


z3=63(cos(π3+4π3)+isin(π3+4π3))=z_3=\sqrt[3]{6}\big(\cos({{\pi\over 3}+4\pi\over 3})+i\sin({{\pi\over 3}+4\pi\over 3})\big)==63(cos(13π9)+isin(13π9))==\sqrt[3]{6}\big(\cos({13\pi\over 9})+i\sin({13\pi\over 9})\big)==63cos(4π9)i63sin(4π9)=-\sqrt[3]{6}\cos({4\pi\over 9})-i\sqrt[3]{6}\sin({4\pi\over 9})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS