According to the De Moivre's Formula, all n-th roots of a complex number r ( cos ( θ ) + i sin ( θ ) ) r(\cos(\theta)+i\sin(\theta)) r ( cos ( θ ) + i sin ( θ )) are given by r n ( cos ( θ + 2 π k n ) + i sin ( θ + 2 π k n ) ) , \sqrt[n]{r}\big(\cos({\theta+2\pi k\over n})+i\sin({\theta+2\pi k\over n})\big), n r ( cos ( n θ + 2 πk ) + i sin ( n θ + 2 πk ) ) , k = 0 , 1 , 2 , . . . , n − 1 k=0,1,2,...,n-1 k = 0 , 1 , 2 , ... , n − 1
We have that r = 6 , θ = π 3 , n = 3. r=6, \theta=\dfrac{\pi}{3}, n=3. r = 6 , θ = 3 π , n = 3.
k = 0 : k=0: k = 0 :
z 1 = 6 3 ( cos ( π 3 + 0 3 ) + i sin ( π 3 + 0 3 ) ) = z_1=\sqrt[3]{6}\big(\cos({{\pi\over 3}+0\over 3})+i\sin({{\pi\over 3}+0\over 3})\big)= z 1 = 3 6 ( cos ( 3 3 π + 0 ) + i sin ( 3 3 π + 0 ) ) = = 6 3 ( cos ( π 9 ) + i sin ( π 9 ) ) = =\sqrt[3]{6}\big(\cos({\pi\over 9})+i\sin({\pi\over 9})\big)= = 3 6 ( cos ( 9 π ) + i sin ( 9 π ) ) = = 6 3 cos ( π 9 ) + i 6 3 sin ( π 9 ) =\sqrt[3]{6}\cos({\pi\over 9})+i\sqrt[3]{6}\sin({\pi\over 9}) = 3 6 cos ( 9 π ) + i 3 6 sin ( 9 π ) k = 1 : k=1: k = 1 :
z 2 = 6 3 ( cos ( π 3 + 2 π 3 ) + i sin ( π 3 + 2 π 3 ) ) = z_2=\sqrt[3]{6}\big(\cos({{\pi\over 3}+2\pi\over 3})+i\sin({{\pi\over 3}+2\pi\over 3})\big)= z 2 = 3 6 ( cos ( 3 3 π + 2 π ) + i sin ( 3 3 π + 2 π ) ) = = 6 3 ( cos ( 7 π 9 ) + i sin ( 7 π 9 ) ) = =\sqrt[3]{6}\big(\cos({7\pi\over 9})+i\sin({7\pi\over 9})\big)= = 3 6 ( cos ( 9 7 π ) + i sin ( 9 7 π ) ) = = − 6 3 cos ( 2 π 9 ) + i 6 3 sin ( 2 π 9 ) =-\sqrt[3]{6}\cos({2\pi\over 9})+i\sqrt[3]{6}\sin({2\pi\over 9}) = − 3 6 cos ( 9 2 π ) + i 3 6 sin ( 9 2 π ) k = 2 : k=2: k = 2 :
z 3 = 6 3 ( cos ( π 3 + 4 π 3 ) + i sin ( π 3 + 4 π 3 ) ) = z_3=\sqrt[3]{6}\big(\cos({{\pi\over 3}+4\pi\over 3})+i\sin({{\pi\over 3}+4\pi\over 3})\big)= z 3 = 3 6 ( cos ( 3 3 π + 4 π ) + i sin ( 3 3 π + 4 π ) ) = = 6 3 ( cos ( 13 π 9 ) + i sin ( 13 π 9 ) ) = =\sqrt[3]{6}\big(\cos({13\pi\over 9})+i\sin({13\pi\over 9})\big)= = 3 6 ( cos ( 9 13 π ) + i sin ( 9 13 π ) ) = = − 6 3 cos ( 4 π 9 ) − i 6 3 sin ( 4 π 9 ) =-\sqrt[3]{6}\cos({4\pi\over 9})-i\sqrt[3]{6}\sin({4\pi\over 9}) = − 3 6 cos ( 9 4 π ) − i 3 6 sin ( 9 4 π )
Comments