According to the De Moivre's Formula, all n-th roots of a complex number r(cos(θ)+isin(θ))are given by nr(cos(nθ+2πk)+isin(nθ+2πk)), k=0,1,2,...,n−1
We have that r=6,θ=3π,n=3.
k=0:
z1=36(cos(33π+0)+isin(33π+0))==36(cos(9π)+isin(9π))==36cos(9π)+i36sin(9π)k=1:
z2=36(cos(33π+2π)+isin(33π+2π))==36(cos(97π)+isin(97π))==−36cos(92π)+i36sin(92π) k=2:
z3=36(cos(33π+4π)+isin(33π+4π))==36(cos(913π)+isin(913π))==−36cos(94π)−i36sin(94π)
Comments