Solution:
We need to find the Integration of given function.
We can use the suitable substitution to change to simple form
We have formulae about differentiation
Differentiate with respect to x
"d(1 + \\sqrt x) = dt"
"0 + \\frac {1} {2 \\sqrt x} dx = dt"
"\\frac {1} {2 \\sqrt x} dx = dt"
"dx = 2 \\sqrt x dt"
"dx = 2 ( t -1 ) dt"
"\\int \\sqrt {( 1 + \\sqrt x)} dx = \\int (\\sqrt t) 2 (t -1) dt"
"=2 \\int ( t^ {\\frac {3}{2} } -t^ {\\frac {1}{2}} ) dt +c"
"= 2 ( \\frac {t^ {\\frac {3}{2} +1}}{\\frac {3}{2} +1} - \\frac {t^ {\\frac {1}{2} +1}}{\\frac {1}{2} +1} ) +c"
"= 2 ( \\frac {t^ {\\frac {5}{2} }}{\\frac {5}{2}} - \\frac {t^ {\\frac {3}{2} }}{\\frac {3}{2} } ) +c"
"= 4 ( \\frac {t^ {\\frac {5}{2} }}{5} - \\frac {t^ {\\frac {3}{2} }}{3} ) +c"
Answer :
"\\int \\sqrt {( 1 + \\sqrt x)} dx = 4 ( \\frac {(1+ \\sqrt x)^ {\\frac {5}{2} }}{5} - \\frac {(1 + \\sqrt x)^ {\\frac {3}{2} }}{3} ) +c"
Comments
Leave a comment