Solution:
We need to find the Integration of given function.
We can use the suitable substitution to change to simple form
We have formulae about differentiation
dxd(xn)=n×xn−1dxd(constant)=0
Let 1+x=t Differentiate with respect to x
d(1+x)=dt
0+2x1dx=dt
2x1dx=dt
dx=2xdt
dx=2(t−1)dt
∫(1+x)dx=∫(t)2(t−1)dt
=2∫(t23−t21)dt+c
=2(23+1t23+1−21+1t21+1)+c
=2(25t25−23t23)+c
=4(5t25−3t23)+c
=4(5(1+x)25−3(1+x)23)+c
Answer :
∫(1+x)dx=4(5(1+x)25−3(1+x)23)+c
Comments