Question #97139
Find the length of the curve, 2y² = x³ from the vertex (0,0) to the point (4,4√2).
1
Expert's answer
2019-10-23T14:54:06-0400

Solution:

We are going to find the length of the curve.



Given curve is

2y2=x32 y^2 = x^3

We can write this for y;

y=±12x32y = ± \frac {1} {\sqrt 2} x^{\frac {3}{2}}

Differentiate with respect to x,



dydx=±12(x32)\frac {dy}{dx} = ± \frac {1} {\sqrt 2}(x^{\frac {3}{2}})^{\prime}

=±12×32×x12==±322×x12= ± \frac {1} {\sqrt 2} \times \frac {3} {2} \times x^{\frac {1}{2}} == ± \frac {3} {2\sqrt 2} \times x^{\frac {1}{2}}

We can find the length of the given curve 2y2=x32 y^2 = x^3 from (0, 0) to the point (4,4√2) by using a formula.

That is,


Length of the curve =

=04(1+(dydx)2 dx=\int_0^ 4 \sqrt {(1+ (\frac {dy}{dx})^2 } \space dx




=04(1+(±322×x12)2 dx= \int_0^ 4 \sqrt {(1+ (± \frac {3} {2\sqrt 2} \times x^{\frac {1}{2}})^2 } \space dx



=04(1+(98×x) dx= \int_0^ 4 \sqrt {(1+ ( \frac {9} {8} \times x) } \space dx

=122048+9x dx= \frac {1} {2\sqrt 2 } \int_0^4 \sqrt {8+ {9} x } \space dx

Let 8+9x=t9dx=dtdx=19dtLet \space 8 +9x = t\\ 9 dx = dt \\ dx = \frac {1}{9} dt

Limits:x=0 then t=8x=4 then t=44Limits : x = 0 \space then \space t = 8 \\ x = 4 \space then \space t = 44

=122844t 19 dt= \frac {1} {2\sqrt 2 } \int_8^{44} \sqrt t \space \frac {1}{9} \space dt

=1182844t12  dt= \frac {1} {18\sqrt 2 } \int_8^{44} t^{\frac {1}{2}} \space \space dt

=1182 [t12+112+1]844= \frac {1} {18\sqrt 2 } \space [\frac {t^{\frac {1}{2} + 1}} {\frac {1}{2} +1}]_8^{44}

=1182 23((44)32(8)32)= \frac {1} {18\sqrt 2 } \space \frac {2}{3} ((44)^{\frac {3}{2}} - (8)^\frac{3}{2})

=1272(8811162)= \frac {1} {27\sqrt 2 } (88\sqrt {11} - 16 \sqrt 2)

Answer:

Length of the curve=1272(8811162)Length \space of \space the \space curve= \frac {1} {27\sqrt 2 } (88\sqrt {11} - 16 \sqrt 2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS