Solution:
We are going to find the length of the curve.
Given curve is
2 y 2 = x 3 2 y^2 = x^3 2 y 2 = x 3
We can write this for y;
y = ± 1 2 x 3 2 y = ± \frac {1} {\sqrt 2} x^{\frac {3}{2}} y = ± 2 1 x 2 3 Differentiate with respect to x,
d y d x = ± 1 2 ( x 3 2 ) ′ \frac {dy}{dx} = ± \frac {1} {\sqrt 2}(x^{\frac {3}{2}})^{\prime} d x d y = ± 2 1 ( x 2 3 ) ′
= ± 1 2 × 3 2 × x 1 2 = = ± 3 2 2 × x 1 2 = ± \frac {1} {\sqrt 2} \times \frac {3} {2} \times x^{\frac {1}{2}} == ± \frac {3} {2\sqrt 2} \times x^{\frac {1}{2}} = ± 2 1 × 2 3 × x 2 1 == ± 2 2 3 × x 2 1
We can find the length of the given curve 2 y 2 = x 3 2 y^2 = x^3 2 y 2 = x 3 from (0, 0) to the point (4,4√2) by using a formula.
That is,
Length of the curve =
= ∫ 0 4 ( 1 + ( d y d x ) 2 d x =\int_0^ 4 \sqrt {(1+ (\frac {dy}{dx})^2 } \space dx = ∫ 0 4 ( 1 + ( d x d y ) 2 d x
= ∫ 0 4 ( 1 + ( ± 3 2 2 × x 1 2 ) 2 d x = \int_0^ 4 \sqrt {(1+ (± \frac {3} {2\sqrt 2} \times x^{\frac {1}{2}})^2 } \space dx = ∫ 0 4 ( 1 + ( ± 2 2 3 × x 2 1 ) 2 d x
= ∫ 0 4 ( 1 + ( 9 8 × x ) d x = \int_0^ 4 \sqrt {(1+ ( \frac {9} {8} \times x) } \space dx = ∫ 0 4 ( 1 + ( 8 9 × x ) d x
= 1 2 2 ∫ 0 4 8 + 9 x d x = \frac {1} {2\sqrt 2 } \int_0^4 \sqrt {8+ {9} x } \space dx = 2 2 1 ∫ 0 4 8 + 9 x d x
L e t 8 + 9 x = t 9 d x = d t d x = 1 9 d t Let \space 8 +9x = t\\
9 dx = dt \\
dx = \frac {1}{9} dt L e t 8 + 9 x = t 9 d x = d t d x = 9 1 d t
L i m i t s : x = 0 t h e n t = 8 x = 4 t h e n t = 44 Limits : x = 0 \space then \space t = 8 \\
x = 4 \space then \space t = 44 L imi t s : x = 0 t h e n t = 8 x = 4 t h e n t = 44
= 1 2 2 ∫ 8 44 t 1 9 d t = \frac {1} {2\sqrt 2 } \int_8^{44} \sqrt t \space \frac {1}{9} \space dt = 2 2 1 ∫ 8 44 t 9 1 d t
= 1 18 2 ∫ 8 44 t 1 2 d t = \frac {1} {18\sqrt 2 } \int_8^{44} t^{\frac {1}{2}} \space \space dt = 18 2 1 ∫ 8 44 t 2 1 d t
= 1 18 2 [ t 1 2 + 1 1 2 + 1 ] 8 44 = \frac {1} {18\sqrt 2 } \space [\frac {t^{\frac {1}{2} + 1}} {\frac {1}{2} +1}]_8^{44} = 18 2 1 [ 2 1 + 1 t 2 1 + 1 ] 8 44
= 1 18 2 2 3 ( ( 44 ) 3 2 − ( 8 ) 3 2 ) = \frac {1} {18\sqrt 2 } \space \frac {2}{3} ((44)^{\frac {3}{2}} - (8)^\frac{3}{2}) = 18 2 1 3 2 (( 44 ) 2 3 − ( 8 ) 2 3 )
= 1 27 2 ( 88 11 − 16 2 ) = \frac {1} {27\sqrt 2 } (88\sqrt {11} - 16 \sqrt 2) = 27 2 1 ( 88 11 − 16 2 ) Answer:
L e n g t h o f t h e c u r v e = 1 27 2 ( 88 11 − 16 2 ) Length \space of \space the \space curve= \frac {1} {27\sqrt 2 } (88\sqrt {11} - 16 \sqrt 2) L e n g t h o f t h e c u r v e = 27 2 1 ( 88 11 − 16 2 )
Comments