We are going to check the given function is Odd (or) Even.
A function "f(X)" is said to be Odd function if
"{f(-X)} = - f(X)"
A function "f(X)" is said to be Even function if
"{f(-X)} = + f(X)"
The given function is
"f(X) = ln | \\frac { 1 - e^{-X}} { 1 + e^{-X}}|"
Now plug X = - X in the function "f(X)":
"f(- X) = ln |\\frac {1- e^ {-(-X)}} {1 + e^ {-(-X)}}|"
Now, divide the numerator and denominator by e^X
"f(- X) = ln |\\frac { e^ {-X} -1} { { e^ {-X}} +1}|"
"f(- X) = ln |\\frac { -(-e^{-X} +1)} { { e^ {-X}} +1}|"
Since "| - a | = |a|",
"f(- X) = ln |\\frac { (1 -e^ {-X})} { { 1 + e^ {-X}} }| = f(X)"
Thus, it is an Even function.
Answer: The given function is Even
Comments
Leave a comment