We are going to check the given function is Odd (or) Even.
A function f(X) is said to be Odd function if
f(−X)=−f(X)
A function f(X) is said to be Even function if
f(−X)=+f(X)
The given function is
f(X)=ln∣1+e−X1−e−X∣
Now plug X = - X in the function f(X):
f(−X)=ln∣1+e−(−X)1−e−(−X)∣
f(−X)=ln∣1+e(+X)1−e(+X)∣
f(−X)=ln∣1+e(X)1−e(X)∣ Now, divide the numerator and denominator by e^X
f(−X)=ln∣eX1+1eX1−1∣
f(−X)=ln∣e−X+1e−X−1∣
f(−X)=ln∣e−X+1−(−e−X+1)∣
f(−X)=ln∣e−X+1(−e−X+1)∣
Since ∣−a∣=∣a∣,
f(−X)=ln∣1+e−X(1−e−X)∣=f(X)
Thus, it is an Even function.
Answer: The given function is Even
Comments