Differentiate from first principle square root of (x+√x).
1
2019-10-21T10:28:34-0400
f(x)=x+x
f′(x)=(x+x)′=h→0limhf(x+h)−f(x)=
=h→0limhx+h+x+h−x+x=
=h→0limhx+h+x+h−x+x⋅x+h+x+hx+h+x+h+x+x=
=h→0limh(x+h+x+h+x+x)x+h+x+h−x−x=
=h→0limh(x+h+x+h+x+x)h+
+h→0limh(x+h+x+h+x+x)x+h−x=
=x+0+x+0+x+x1+
+h→0limh(x+h+x+h+x+x)x+h−x⋅x+h+xx+h+x=
=2x+x1+h→0limh(x+h+x+h+x+x)(x+h+x)x+h−x=
=2x+x1+h→0lim(x+h+x+h+x+x)(x+h+x)1=
=2x+x1+(x+0+x+0+x+x)(x+0+x)1=
=2x+x1(1+2x1)
(x+x)′=2x+x1(1+2x1)
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments