f(x,y)=ye(x+y)f(x,y)=ye^{(x+y)}f(x,y)=ye(x+y)
Total differential of the function is df=(∂f∂x)dx+(∂f∂y)dyd f =(\frac{\partial f}{\partial x})dx+(\frac{\partial f}{\partial y})dydf=(∂x∂f)dx+(∂y∂f)dy
df=∂∂x(ye(x+y))dx+∂∂y(ye(x+y))dyd f=\frac{\partial }{\partial x}(ye^{(x+y)})dx+\frac{\partial }{\partial y}(ye^{(x+y)})dydf=∂x∂(ye(x+y))dx+∂y∂(ye(x+y))dy
df=ye(x+y)dxd f=ye^{(x+y)}dxdf=ye(x+y)dx +(ye(x+y)+e(x+y))dy+(ye^{(x+y)}+e^{(x+y)})dy+(ye(x+y)+e(x+y))dy
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments