"\\iint_D\\frac{dA}{(x^2+y^2)^{n\/2}}"
Let's use the polar coordinates
"dA=(rd\\theta)(dr)"
Where a<r<b
"\\iint_D\\frac{rd\\theta dr}{r^{2n\/2}}=\\int\\limits_{a}^{b} r^{1-n}dr\\int\\limits_{0}^{2\\pi}d\\theta=2\\pi\\left(\\frac{r^{2-n}}{2-n}\\right)_a^b=2\\pi\\frac{b^{2-n}-a^{2-n}}{2-n}"
If "a\\to 0", then
"2\\pi\\frac{b^{2-n}-a^{2-n}}{2-n}\\to2\\pi\\frac{b^{2-n}}{2-n}"
Comments
Leave a comment