∬DdA(x2+y2)n/2\iint_D\frac{dA}{(x^2+y^2)^{n/2}}∬D(x2+y2)n/2dA
Let's use the polar coordinates
dA=(rdθ)(dr)dA=(rd\theta)(dr)dA=(rdθ)(dr)
Where a<r<b
∬Drdθdrr2n/2=∫abr1−ndr∫02πdθ=2π(r2−n2−n)ab=2πb2−n−a2−n2−n\iint_D\frac{rd\theta dr}{r^{2n/2}}=\int\limits_{a}^{b} r^{1-n}dr\int\limits_{0}^{2\pi}d\theta=2\pi\left(\frac{r^{2-n}}{2-n}\right)_a^b=2\pi\frac{b^{2-n}-a^{2-n}}{2-n}∬Dr2n/2rdθdr=a∫br1−ndr0∫2πdθ=2π(2−nr2−n)ab=2π2−nb2−n−a2−n
If a→0a\to 0a→0, then
2πb2−n−a2−n2−n→2πb2−n2−n2\pi\frac{b^{2-n}-a^{2-n}}{2-n}\to2\pi\frac{b^{2-n}}{2-n}2π2−nb2−n−a2−n→2π2−nb2−n
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments