By definition, the volume of a cylinder is given by the formula: "V = \\oiiint_C \\limits dV" . Consider that cylinder is placed along the z-axis with the center of base in the origin of coordinate system.
(a) Cartesian coordinates.
"V = \\iiint_C \\limits dxdydz" .
The region of integration: "-R \\le x\\le R, -\\sqrt{R^2-x^2} \\le y\\le \\sqrt{R^2-x^2}, 0\\le z\\le h.\\\\"
Thus:
"V = \\int_0^h \\limits dz \\int_{-R}^R \\limits dx \\int_{-\\sqrt{R^2-x^2}}^{\\sqrt{R^2-x^2}}\\limits dy = \\pi R^2 h"
(b)Cylindrical coordinates.
Coordinate transformation is given by: "x = \\rho \\cos{\\varphi}, y = \\rho \\sin{\\varphi}, z = z" .
The region of integration: "0 \\le \\rho\\le R,\\: 0\\le \\varphi\\le2\\pi,\\: 0\\le z\\le h\\\\"
The Jacobian (see https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant):
"J = \\rho \\Rightarrow dxdydz = \\rho\\cdot d\\rho d\\varphi dz".
Thus:
"V = \\iiint_C \\limits \\rho\\cdot d\\rho d\\varphi dz = \\int_0^h \\limits dz \\int_{0}^{2\\pi} \\limits d\\varphi \\int_0^R \\limits \\rho d\\rho = \\pi R^2 h"
(c) Spherical coordinates.
Coordinate transformation is given by: "x = \\rho\\sin{\\theta} \\cos{\\varphi},\\: y = \\rho\\sin{\\theta} \\sin{\\varphi}, z = \\rho\\cos{\\theta}".
The region of integration. The equation of the limited cylindrical surface in spherical coordinates is: "\\rho \\sin{\\theta}=R,\\: \\arctan{\\dfrac{R}{h}} \\le \\theta \\le \\dfrac{\\pi}{2}". The equation of the top base of cylinder is: "\\rho \\cos{\\theta}=h,\\: 0 \\le \\theta \\le \\arctan{\\dfrac{R}{h}}" .
And, due to z-symmetry, "0\\le \\varphi\\le2\\pi".
The Jacobian of transformation: "J = \\rho^2 \\sin{\\theta} \\Rightarrow dxdydz = \\rho^2 \\sin{\\theta}\\cdot d\\rho d\\varphi d\\theta".
Thus:
"V = \\iiint_C \\limits \\rho^2 \\sin{\\theta}\\cdot d\\varphi d\\theta d\\rho = \\int_{0}^{2\\pi} \\limits d\\varphi \\left[ \\int_0^{\\arctan{\\frac{R}{h}}} \\limits \\sin{\\theta} d\\theta\n\\int_0^{\\frac{h}{\\cos{\\theta}}} \\limits \\rho^2 d\\rho + \n\\int_{\\arctan{\\frac{R}{h}}}^{\\frac{\\pi}{2}} \\limits \\sin{\\theta} d\\theta\n\\int_0^{\\frac{R}{\\sin{\\theta}}} \\limits \\rho^2 d\\rho \\right] = \\pi R^2 h"
P.S. Integrating over the cylinder in spherical coordinates is not convenient.
Comments
Leave a comment