Question #96195
Suppose f(0)=2, f’(0)=7, f(1)=5, f’(1)=8, g(1)=1, g’(1)=-9 and H(x)=f(ln(x))+ln(g(x)). Find dH/dx, x=1
What is H’(1)?
1
Expert's answer
2019-10-10T13:52:00-0400

Q96195


Solution:

d/dx(f(x)+g(x))=f(x)+g(x)d/dx(f(x)+g(x))=f'(x)+g'(x) -------(1)

And for a composite function f(g(x)), its's derivative is defined as:

df/dx=f(g(x))g(x)df/dx=f'(g(x))*g'(x) -----(2)

Moreover, d/dx(ln(x))=1/xd/dx(ln(x))=1/x -----(3)

Also, given:

g(1)=1g(1)=1 ----(4)

g(1)=9g'(1)= -9 ----(5)

f(0)=7f'(0)=7 ----(6)


Now, H(x)=f(ln(x))+ln(g(x))H(x)=f(ln(x))+ln(g(x))

thus, using (1), (2) and (3),

H(x)=H'(x)= dH/dx=f(ln(x))/x+g(x)/g(x)dH/dx=f'(ln(x))/x +g'(x)/g(x)

hence, H(1)=f(ln(1))/1+g(1)/g(1)H'(1) = f'(ln(1))/1 +g'(1)/g(1) (since, ln(1)=0ln(1) = 0 )

=f(0)+g(1)/g(1)=f'(0) + g'(1)/g(1)

=7+(9/1)= 7 + (-9/1) (using (4), (5) and (6))

=79= 7-9

= -2 (Answer)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS