Q96195
Solution:
d/dx(f(x)+g(x))=f′(x)+g′(x) -------(1)
And for a composite function f(g(x)), its's derivative is defined as:
df/dx=f′(g(x))∗g′(x) -----(2)
Moreover, d/dx(ln(x))=1/x -----(3)
Also, given:
g(1)=1 ----(4)
g′(1)=−9 ----(5)
f′(0)=7 ----(6)
Now, H(x)=f(ln(x))+ln(g(x))
thus, using (1), (2) and (3),
H′(x)= dH/dx=f′(ln(x))/x+g′(x)/g(x)
hence, H′(1)=f′(ln(1))/1+g′(1)/g(1) (since, ln(1)=0 )
=f′(0)+g′(1)/g(1)
=7+(−9/1) (using (4), (5) and (6))
=7−9
= -2 (Answer)
Comments