There are 6 possible ordersof integration
"V=\\iiint_\\Omega dV"
"-2\\leq y\\leq 2, \\ 0\\leq x\\leq 4-y^2,\\ 2-y\\leq z\\leq 4"
"V=\\displaystyle\\int_{-2}^2\\displaystyle\\int_{0}^{4-y^2}\\displaystyle\\int_{2-y}^4dzdxdy="
"=\\displaystyle\\int_{-2}^2\\displaystyle\\int_{0}^{4-y^2}[z]\\begin{matrix}\n 4 \\\\\n 2-y\n\\end{matrix}dxdy=\\displaystyle\\int_{-2}^2\\displaystyle\\int_{0}^{4-y^2}(2+y)dxdy="
"=\\displaystyle\\int_{-2}^2[2x+xy]\\begin{matrix}\n 4-y^2 \\\\\n 0\n\\end{matrix}dy=\\displaystyle\\int_{-2}^2\\big(2(4-y^2)+y(4-y^2)-0\\big)dy="
"=\\bigg[ 8y-{2y^3 \\over 3}+2y^2-{y^4 \\over 4}\\bigg]\\begin{matrix}\n 2 \\\\\n -2\n\\end{matrix}="
"=16-{16 \\over 3}+8-4+16-{16 \\over 3}-8+4={64 \\over 3}(units^3)"
"0\\leq x\\leq 4, \\ -\\sqrt{4-x}\\leq y\\leq \\sqrt{4-x},\\ 2-y\\leq z\\leq 4""V=\\displaystyle\\int_{0}^4\\displaystyle\\int_{-\\sqrt{4-x}}^{\\sqrt{4-x}}\\displaystyle\\int_{2-y}^4dzdydx"
Comments
Leave a comment