Question #95944
Let Ω be the region above y+z= 2, below z= 4, and between x= 0 and x= 4−y^2 a triple integral for the volume of the region. Set up an integral to represent the volume of Ω in all six orders and then fully solve ONE of them.
1
Expert's answer
2019-10-07T10:04:46-0400

There are 6 possible ordersof integration


dzdxdy,dzdydx,dydzdx,dydxdz,dxdydz,dxdzdydzdxdy,dzdydx,dydzdx,dydxdz,dxdydz,dxdzdy

V=ΩdVV=\iiint_\Omega dV

2y2, 0x4y2, 2yz4-2\leq y\leq 2, \ 0\leq x\leq 4-y^2,\ 2-y\leq z\leq 4

V=2204y22y4dzdxdy=V=\displaystyle\int_{-2}^2\displaystyle\int_{0}^{4-y^2}\displaystyle\int_{2-y}^4dzdxdy=

=2204y2[z]42ydxdy=2204y2(2+y)dxdy==\displaystyle\int_{-2}^2\displaystyle\int_{0}^{4-y^2}[z]\begin{matrix} 4 \\ 2-y \end{matrix}dxdy=\displaystyle\int_{-2}^2\displaystyle\int_{0}^{4-y^2}(2+y)dxdy=

=22[2x+xy]4y20dy=22(2(4y2)+y(4y2)0)dy==\displaystyle\int_{-2}^2[2x+xy]\begin{matrix} 4-y^2 \\ 0 \end{matrix}dy=\displaystyle\int_{-2}^2\big(2(4-y^2)+y(4-y^2)-0\big)dy=

=[8y2y33+2y2y44]22==\bigg[ 8y-{2y^3 \over 3}+2y^2-{y^4 \over 4}\bigg]\begin{matrix} 2 \\ -2 \end{matrix}=

=16163+84+161638+4=643(units3)=16-{16 \over 3}+8-4+16-{16 \over 3}-8+4={64 \over 3}(units^3)

0x4, 4xy4x, 2yz40\leq x\leq 4, \ -\sqrt{4-x}\leq y\leq \sqrt{4-x},\ 2-y\leq z\leq 4V=044x4x2y4dzdydxV=\displaystyle\int_{0}^4\displaystyle\int_{-\sqrt{4-x}}^{\sqrt{4-x}}\displaystyle\int_{2-y}^4dzdydx



2y2, 2yz4, 0x4y2-2\leq y\leq 2, \ 2-y\leq z\leq 4,\ 0\leq x\leq 4-y^2V=222y404y2dxdzdyV=\displaystyle\int_{-2}^2\displaystyle\int_{2-y}^4\displaystyle\int_{0}^{4-y^2}dxdzdy



0z4, 2y2z, 0x4y20\leq z\leq 4, \ -2\leq y\leq 2-z,\ 0\leq x\leq 4-y^2V=0422z04y2dxdydzV=\displaystyle\int_{0}^4\displaystyle\int_{-2}^{2-z}\displaystyle\int_{0}^{4-y^2}dxdydz



0z4, 0x4(2z)2, 2y2z0\leq z\leq 4, \ 0\leq x\leq 4-(2-z)^2,\ -2\leq y\leq 2-zV=0404(2z)222zdydxdzV=\displaystyle\int_{0}^4\displaystyle\int_{0}^{4-(2-z)^2}\displaystyle\int_{-2}^{2-z}dydxdz



0x4, 24xz2+4x, 2y2z0\leq x\leq 4, \ 2-\sqrt{4-x}\leq z\leq 2+\sqrt{4-x},\ -2\leq y\leq 2-zV=0424x2+4x22zdydzdxV=\displaystyle\int_{0}^4\displaystyle\int_{2-\sqrt{4-x}}^{2+\sqrt{4-x}}\displaystyle\int_{-2}^{2-z}dydzdx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS