Let us define the area "D" in Cartesian coordinates:
"y_1=-\\dfrac{b}{a}\\sqrt{a^2-x^2}\\\\\ny_2=\\dfrac{b}{a}\\sqrt{a^2-x^2}\\\\\nx_1=-a\\\\\nx_2=a\\\\"
Then the value of the area of ellipse is given by the integral over this area "D" from the function "f(x,y)=1:\\\\"
"A = \\iint_D \\limits dxdy\\\\"
Opening the double integral:
"A = \\int_{x_1}^{x_2}\\limits dx\\int_{y_1}^{y_2}\\limits dy= \\int_{-a}^{a}\\limits dx\\int_{-\\frac{b}{a}\\sqrt{a^2-x^2}}^{\\frac{b}{a}\\sqrt{a^2-x^2}}\\limits dy = 2\\int_{-a}^{a}\\limits \\frac{b}{a}\\sqrt{a^2-x^2}dx=2\\dfrac{b}{a}\\int_{-a}^{a}\\limits \\sqrt{a^2-x^2}dx\\\\"
The last integral is the half area of circle of radius a, so it is equal to "\\pi a^2\/2"
"A=2\\dfrac{b}{a} \\dfrac{\\pi a^2}{2}=\\pi ab\\\\"
If "a" is approaching to 0, the area is approaching to 0 too.
Comments
Leave a comment