Lebnicz formula for the product
(f(x)g(x))(n)=r=0∑nCnr(f)(n−r)(x)(g)(r)(x)
f(x)=2x3+x2+x+2,g(x)=e2x
(f(x)g(x))(4)=((2x3+x2+x+2)e2x)(4)==r=0∑4C4r(2x3+x2+x+2)(4−r)(e2x)(r) =
=r=0∑nC4r((2x3+x2+x+2))(4−r)(x)(e2x)(r)==C40((2x3+x2+x+2))(4)(x)(e2x)++C41((2x3+x2+x+2))(3)(x)(e2x)(1)++C42((2x3+x2+x+2))(2)(x)(e2x)(2)++C43((2x3+x2+x+2))(1)(x)(e2x)(3)++C44((2x3+x2+x+2))(x)(e2x)(4)
Cnr=(n−k)!k!n!
C40=(4)!0!4!=1C41=(3)!1!4!=4C42=(2)!2!4!=6C43=(1)!3!4!=4C44=(0)!4!4!=1
(2x3+x2+x+2)(1)=6x2+2x+1(2x3+x2+x+2)(2)=(6x2+2x+1)(1)=12x+2(2x3+x2+x+2)(3)=(12x+2)(1)=12(2x3+x2+x+2)(4)=0
(e2x)(1)=2e2x(e2x)(2)=4e2x(e2x)(3)=8e2x(e2x)(4)=16e2x
So
((2x3+x2+x+2)e2x)(4)==1∗0∗e2x+4∗2∗12e2x++6∗4∗(12x+2)e2x++4∗8∗(6x2+2x+1)e2x++1∗16(2x3+x2+x+2)e2x==e2x(32x3+208x2+368x+208)
Answer:
dx4d4((2x3+x2+x+2)e2x)=e2x(32x3+208x2+368x+208).
Comments