Question #96839
use Leibnitz theorem to evaluate the fourth derivative of \\(\\left(2x^{3}+x^{2}+x+2\\right)e^{2x}\\)
1
Expert's answer
2019-10-21T08:32:45-0400

Lebnicz formula for the product


(f(x)g(x))(n)=r=0nCnr(f)(nr)(x)(g)(r)(x)(f(x)g(x)) ^{(n)}= \sum\limits _{r=0}^{n}C^r_n(f )^{(n-r)}(x) (g )^{(r)}(x)


f(x)=2x3+x2+x+2,g(x)=e2xf(x)= 2x^{3}+x^{2}+x+2, g(x)=e^{2x}


(f(x)g(x))(4)=((2x3+x2+x+2)e2x)(4)==r=04C4r(2x3+x2+x+2)(4r)(e2x)(r)(f(x)g(x)) ^{(4)}=((2x^{3}+x^{2}+x+2)e^{2x}) ^{(4)} = \\ = \sum \limits _{r=0}^{4} C^r_4(2x^{3}+x^{2}+x+2) ^{(4-r)} (e^{2x} )^{(r)} =

=r=0nC4r((2x3+x2+x+2))(4r)(x)(e2x)(r)==C40((2x3+x2+x+2))(4)(x)(e2x)++C41((2x3+x2+x+2))(3)(x)(e2x)(1)++C42((2x3+x2+x+2))(2)(x)(e2x)(2)++C43((2x3+x2+x+2))(1)(x)(e2x)(3)++C44((2x3+x2+x+2))(x)(e2x)(4)=\sum\limits _{r=0}^{n}C^r_4((2x^{3}+x^{2}+x+2) )^{(4-r)}(x) (e^{2x} )^{(r)}=\\=C^0_4((2x^{3}+x^{2}+x+2) )^{(4)}(x) (e^{2x} )+\\ +C^1_4((2x^{3}+x^{2}+x+2) )^{(3)}(x) (e^{2x} )^{(1)}+\\+C^2_4((2x^{3}+x^{2}+x+2) )^{(2)}(x) (e^{2x} )^{(2)}+\\+C^3_4((2x^{3}+x^{2}+x+2) )^{(1)}(x) (e^{2x} )^{(3)}+\\+C^4_4((2x^{3}+x^{2}+x+2) )(x) (e^{2x} )^{(4)}


\frac{}{}   Cnr=n!(nk)!k!C^r_n=\frac{n!}{(n-k)! k!} ​

C40=4!(4)!0!=1C41=4!(3)!1!=4C42=4!(2)!2!=6C43=4!(1)!3!=4C44=4!(0)!4!=1C^0_4=\frac{4!}{(4)! 0!}=1 \\ C^1_4=\frac{4!}{(3)! 1!}=4\\ C^2_4=\frac{4!}{(2)! 2!}=6\\C^3_4=\frac{4!}{(1)! 3!}=4\\C^4_4=\frac{4!}{(0)! 4!}=1

(2x3+x2+x+2)(1)=6x2+2x+1(2x3+x2+x+2)(2)=(6x2+2x+1)(1)=12x+2(2x3+x2+x+2)(3)=(12x+2)(1)=12(2x3+x2+x+2)(4)=0(2x^{3}+x^{2}+x+2) ^{(1)}=6x^{2}+2x^+1\\ (2x^{3}+x^{2}+x+2) ^{(2)}=(6x^{2}+2x+1)^{(1)}=12x+2\\ (2x^{3}+x^{2}+x+2) ^{(3)}=(12x+2)^{(1)}=12\\ (2x^{3}+x^{2}+x+2) ^{(4)}=0


(e2x)(1)=2e2x(e2x)(2)=4e2x(e2x)(3)=8e2x(e2x)(4)=16e2x(e^{2x} )^{(1)}=2e^{2x} \\ (e^{2x} )^{(2)}=4e^{2x}\\ (e^{2x} )^{(3)}=8e^{2x}\\ (e^{2x} )^{(4)}=16e^{2x}

So


((2x3+x2+x+2)e2x)(4)==10e2x+4212e2x++64(12x+2)e2x++48(6x2+2x+1)e2x++116(2x3+x2+x+2)e2x==e2x(32x3+208x2+368x+208)((2x^{3}+x^{2}+x+2)e^{2x}) ^{(4)}=\\=1*0*e^{2x}+4*2*12 e^{2x}+ \\+6*4*(12x+2) e^{2x}+ \\+4*8*(6x^{2}+2x+1) e^{2x}+\\+1*16 (2x^{3}+x^{2}+x+2) e^{2x}=\\=e^{2x}(32x^3+208x^2+368x+208)


Answer:


d4dx4((2x3+x2+x+2)e2x)=e2x(32x3+208x2+368x+208).\frac{d^4}{dx^4} ((2x^{3}+x^{2}+x+2)e^{2x})=e^{2x}(32x^3+208x^2+368x+208).










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS