"x(\\theta)=a(\\theta+sin(\\theta))\\\\\ny(\\theta)=a(1+sin(\\theta))\\\\"
area calculation formula:
"P=2\\pi \\displaystyle\\intop _{\\theta_1} ^{\\theta_2} y(\\theta)*\\sqrt{(x'(\\theta))^2+(y'(\\theta))^2}d\\theta\\\\\nx'(\\theta)=a+a*cos(\\theta)\\\\\ny'(\\theta)=-asin(\\theta)\\\\"
after substitution and simplification
"P=2\\pi\\displaystyle\\intop _{0} ^{\\pi} a*(1+cos(\\theta))*a*2*cos(\\theta\/2)d\\theta=\\\\\n=4\\pi a^2\\displaystyle\\intop_{0}^{\\pi}(cos(\\theta\/2)+cos(\\theta)*cos(\\theta\/2))d\\theta=\\\\\n=32\\pi a^2\/3"
since we calculated only half of the figure, the result should be multiplied by 2
answer: "64 \\pi *a^2\/3"
Comments
Leave a comment