Question #347485

find the centroid of the region with the indicated boundaries y = 4 - x^2 and the x-axis


1
Expert's answer
2022-06-02T18:15:19-0400


The coordinates of the centroid of a region bouded by curves y=f(x)y=f(x) and y=g(x)y=g(x)

(f(x)g(x)f(x) \geq g(x) ):

x=1Aabx[f(x)g(x)]dx,\overline{x}=\frac{1}{A}\int_a^b x[f(x)-g(x)]dx,

y=12Aab[(f(x))2(g(x))2]dx,\overline{y}=\frac{1}{2A}\int_a^b [(f(x))^2-(g(x))^2]dx,

where a and b the endpoints and A the area of the region.


We have:

A=22(4x2)dx=(4xx33)22=A=\int_{-2}^2 (4-x^2)dx= (4x-\frac{x^3}{3})|_{-2}^2=

=(42233)22(4(2)(2)33)22== (4\cdot 2-\frac{2^3}{3})|_{-2}^2 - (4\cdot (-2)-\frac{(-2)^3}{3})|_{-2}^2=

=883+883=16163=16513=1023.=8-\frac{8}{3}+8-\frac{8}{3}=16-\frac{16}{3}=16-5\frac{1}{3}=10\frac{2}{3}.


x=33222x[4x2]dx=33222(4xx3)dx=\overline{x}=\frac{3}{32}\int_{-2}^2 x[4-x^2]dx= \frac{3}{32}\int_{-2}^2 (4x-x^3)dx=

=332(4x22x44)22=332(2x2x44)22==\frac{3}{32}(4\frac{x^2}{2}-\frac{x^4}{4})|_{-2}^{2}=\frac{3}{32}(2x^2-\frac{x^4}{4})|_{-2}^{2}=

=332[(222244)(2(2)2(2)44)]22=0.=\frac{3}{32}[(2\cdot 2^2-\frac{2^4}{4})-(2\cdot (-2)^2-\frac{(-2)^4}{4})]|_{-2}^{2}=0.


y=36422(4x2)2dx=36422(168x2+x4)dx=\overline{y}=\frac{3}{64}\int_{-2}^2 (4-x^2)^2dx=\frac{3}{64}\int_{-2}^2 (16-8x^2+x^4)dx=

=36422(168x2+x4)dx=364(16x8x33+x55)22==\frac{3}{64}\int_{-2}^2 (16-8x^2+x^4)dx=\frac{3}{64} (16x-8\frac{x^3}{3}+\frac{x^5}{5})|_{-2}^{2}=

=364[(1628233+255)(16(2)8(2)33+(2)55)]==\frac{3}{64} [(16\cdot2-\frac{8\cdot 2^3}{3}+\frac{2^5}{5})-(16\cdot(-2)-\frac{8\cdot (-2)^3}{3}+\frac{(-2)^5}{5})]=

=364[(32643+325)(32+643325)]==\frac{3}{64}[(32-\frac{64}{3}+\frac{32}{5})-(-32+\frac{64}{3}-\frac{32}{5})]=

=364(644223+1245)=364(2113+1245)==\frac{3}{64}(64-42\frac{2}{3}+12\frac{4}{5})=\frac{3}{64}(21\frac{1}{3}+12\frac{4}{5})=

=364(21515+121215)=36434215==\frac{3}{64}(21\frac{5}{15}+12\frac{12}{15})=\frac{3}{64}\cdot34\frac{2}{15}=

=36451215=85=135.=\frac{3}{64}\cdot \frac{512}{15}=\frac{8}{5}=1\frac{3}{5}.


Answer: (0,135).(0, 1\frac{3}{5}).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS