find the centroid of the region with the indicated boundaries y = 4 - x^2 and the x-axis
The coordinates of the centroid of a region bouded by curves "y=f(x)" and "y=g(x)"
("f(x) \\geq g(x)" ):
"\\overline{x}=\\frac{1}{A}\\int_a^b x[f(x)-g(x)]dx,"
"\\overline{y}=\\frac{1}{2A}\\int_a^b [(f(x))^2-(g(x))^2]dx,"
where a and b the endpoints and A the area of the region.
We have:
"A=\\int_{-2}^2 (4-x^2)dx= (4x-\\frac{x^3}{3})|_{-2}^2="
"= (4\\cdot 2-\\frac{2^3}{3})|_{-2}^2 - (4\\cdot (-2)-\\frac{(-2)^3}{3})|_{-2}^2="
"=8-\\frac{8}{3}+8-\\frac{8}{3}=16-\\frac{16}{3}=16-5\\frac{1}{3}=10\\frac{2}{3}."
"\\overline{x}=\\frac{3}{32}\\int_{-2}^2 x[4-x^2]dx= \\frac{3}{32}\\int_{-2}^2 (4x-x^3)dx="
"=\\frac{3}{32}(4\\frac{x^2}{2}-\\frac{x^4}{4})|_{-2}^{2}=\\frac{3}{32}(2x^2-\\frac{x^4}{4})|_{-2}^{2}="
"=\\frac{3}{32}[(2\\cdot 2^2-\\frac{2^4}{4})-(2\\cdot (-2)^2-\\frac{(-2)^4}{4})]|_{-2}^{2}=0."
"\\overline{y}=\\frac{3}{64}\\int_{-2}^2 (4-x^2)^2dx=\\frac{3}{64}\\int_{-2}^2 (16-8x^2+x^4)dx="
"=\\frac{3}{64}\\int_{-2}^2 (16-8x^2+x^4)dx=\\frac{3}{64} (16x-8\\frac{x^3}{3}+\\frac{x^5}{5})|_{-2}^{2}="
"=\\frac{3}{64} [(16\\cdot2-\\frac{8\\cdot 2^3}{3}+\\frac{2^5}{5})-(16\\cdot(-2)-\\frac{8\\cdot (-2)^3}{3}+\\frac{(-2)^5}{5})]="
"=\\frac{3}{64}[(32-\\frac{64}{3}+\\frac{32}{5})-(-32+\\frac{64}{3}-\\frac{32}{5})]="
"=\\frac{3}{64}(64-42\\frac{2}{3}+12\\frac{4}{5})=\\frac{3}{64}(21\\frac{1}{3}+12\\frac{4}{5})="
"=\\frac{3}{64}(21\\frac{5}{15}+12\\frac{12}{15})=\\frac{3}{64}\\cdot34\\frac{2}{15}="
"=\\frac{3}{64}\\cdot \\frac{512}{15}=\\frac{8}{5}=1\\frac{3}{5}."
Answer: "(0, 1\\frac{3}{5})."
Comments
Leave a comment