The coordinates of the centroid of a region bouded by curves y=f(x) and y=g(x)
(f(x)≥g(x) ):
x=A1∫abx[f(x)−g(x)]dx,
y=2A1∫ab[(f(x))2−(g(x))2]dx,
where a and b the endpoints and A the area of the region.
We have:
A=∫−22(4−x2)dx=(4x−3x3)∣−22=
=(4⋅2−323)∣−22−(4⋅(−2)−3(−2)3)∣−22=
=8−38+8−38=16−316=16−531=1032.
x=323∫−22x[4−x2]dx=323∫−22(4x−x3)dx=
=323(42x2−4x4)∣−22=323(2x2−4x4)∣−22=
=323[(2⋅22−424)−(2⋅(−2)2−4(−2)4)]∣−22=0.
y=643∫−22(4−x2)2dx=643∫−22(16−8x2+x4)dx=
=643∫−22(16−8x2+x4)dx=643(16x−83x3+5x5)∣−22=
=643[(16⋅2−38⋅23+525)−(16⋅(−2)−38⋅(−2)3+5(−2)5)]=
=643[(32−364+532)−(−32+364−532)]=
=643(64−4232+1254)=643(2131+1254)=
=643(21155+121512)=643⋅34152=
=643⋅15512=58=153.
Answer: (0,153).
Comments