If f(x,y) = x^3 + 4xy^2 + y^3, show that f(ax, ay)= a^3 f(x,y).
f(ax,ay)=(ax)3+4ax(ay)2+(ay)3=a3x3+4a3xy2+a3y3=a3(x3+4xy2+y3)=a3f(x,y)f(ax, ay) = (ax)^3 + 4 ax(ay )^2+(ay)^3 = a^3x^3+4a^3xy^2 + a^3y^3 = a^3(x^3+4xy^2+y^3) = a^3f(x,y)f(ax,ay)=(ax)3+4ax(ay)2+(ay)3=a3x3+4a3xy2+a3y3=a3(x3+4xy2+y3)=a3f(x,y)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments