If P(x) =√x, show that P(x+h) - P(x) = h(√x+h + √x).
P(x)=x,P(x)=\sqrt{x},P(x)=x,
then
P(x+h)=x+h.P(x+h)=\sqrt{x+h}.P(x+h)=x+h.
Let's subtract and simplify:
P(x+h)−P(x)=x+h−x=P(x+h) - P(x)=\sqrt{x+h}-\sqrt{x}=P(x+h)−P(x)=x+h−x=
=(x+h−x)(x+h+x)x+h+x== \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{\sqrt{x+h}+\sqrt{x}}==x+h+x(x+h−x)(x+h+x)=
=(x+h)2−(x)2x+h+x=(x+h)−xx+h+x=hx+h+x.= \frac{(\sqrt{x+h})^2-(\sqrt{x})^2}{\sqrt{x+h}+\sqrt{x}}= \frac{(x+h)-x}{\sqrt{x+h}+\sqrt{x}}= \frac{h}{\sqrt{x+h}+\sqrt{x}}.=x+h+x(x+h)2−(x)2=x+h+x(x+h)−x=x+h+xh.
So, we showed that
P(x+h)−P(x)=hx+h+x.P(x+h) - P(x)= \frac{h}{\sqrt{x+h}+\sqrt{x}}.P(x+h)−P(x)=x+h+xh.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments