If P(x) =√x, show that P(x+h) - P(x) = h(√x+h + √x).
"P(x)=\\sqrt{x},"
then
"P(x+h)=\\sqrt{x+h}."
Let's subtract and simplify:
"P(x+h) - P(x)=\\sqrt{x+h}-\\sqrt{x}="
"= \\frac{(\\sqrt{x+h}-\\sqrt{x})(\\sqrt{x+h}+\\sqrt{x})}{\\sqrt{x+h}+\\sqrt{x}}="
"= \\frac{(\\sqrt{x+h})^2-(\\sqrt{x})^2}{\\sqrt{x+h}+\\sqrt{x}}= \\frac{(x+h)-x}{\\sqrt{x+h}+\\sqrt{x}}= \\frac{h}{\\sqrt{x+h}+\\sqrt{x}}."
So, we showed that
"P(x+h) - P(x)= \\frac{h}{\\sqrt{x+h}+\\sqrt{x}}."
Comments
Leave a comment