Question #347332

If P(x) =√x, show that P(x+h) - P(x) = h(√x+h + √x).

1
Expert's answer
2022-06-06T14:28:50-0400

P(x)=x,P(x)=\sqrt{x},

then

P(x+h)=x+h.P(x+h)=\sqrt{x+h}.

Let's subtract and simplify:

P(x+h)P(x)=x+hx=P(x+h) - P(x)=\sqrt{x+h}-\sqrt{x}=


=(x+hx)(x+h+x)x+h+x== \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{\sqrt{x+h}+\sqrt{x}}=


=(x+h)2(x)2x+h+x=(x+h)xx+h+x=hx+h+x.= \frac{(\sqrt{x+h})^2-(\sqrt{x})^2}{\sqrt{x+h}+\sqrt{x}}= \frac{(x+h)-x}{\sqrt{x+h}+\sqrt{x}}= \frac{h}{\sqrt{x+h}+\sqrt{x}}.


So, we showed that

P(x+h)P(x)=hx+h+x.P(x+h) - P(x)= \frac{h}{\sqrt{x+h}+\sqrt{x}}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS