Answer to Question #346264 in Calculus for Elam Voyi

Question #346264

Differentiate:



f(x)= (2x⁴+5x+2)



g(x)= 3x²√6x³+5x²+1



h(x)= 4x²/√x+7

1
Expert's answer
2022-05-30T23:29:04-0400

a)


f(x)=2(4x3)+5(1)+0f'(x)= 2(4x^3)+5(1)+0

=8x3+5=8x^3+5

b)


g(x)=(3x2)6x3+5x2+1g'(x)=(3x^2)'\sqrt{6x^3+5x^2+1}

+3x2(6x3+5x2+1)+3x^2(\sqrt{6x^3+5x^2+1})'

=6x6x3+5x2+1=6x\sqrt{6x^3+5x^2+1}

+3x226x3+5x2+1(6x3+5x2+1)+\dfrac{3x^2}{2\sqrt{6x^3+5x^2+1}}(6x^3+5x^2+1)'


=6x6x3+5x2+1=6x\sqrt{6x^3+5x^2+1}

+3x2(18x2+10x)26x3+5x2+1+\dfrac{3x^2(18x^2+10x)}{2\sqrt{6x^3+5x^2+1}}

=3x(12x3+10x2+2+9x3+5x2)6x3+5x2+1=\dfrac{3x(12x^3+10x^2+2+9x^3+5x^2)}{\sqrt{6x^3+5x^2+1}}

=3x(21x3+15x2+2)6x3+5x2+1=\dfrac{3x(21x^3+15x^2+2)}{\sqrt{6x^3+5x^2+1}}

c)


h(x)=(4x2)x+74x2(x+7)x+7h'(x)=\dfrac{(4x^2)'\sqrt{x+7}-4x^2(\sqrt{x+7})'}{x+7}

=8xx+74x2(12x+7)x+7=\dfrac{8x\sqrt{x+7}-4x^2(\dfrac{1}{2\sqrt{x+7}})}{x+7}

=8x2+56x2x2(x+7)3/2=\dfrac{8x^2+56x-2x^2}{(x+7)^{3/2}}

=6x2+56x(x+7)3/2=\dfrac{6x^2+56x}{(x+7)^{3/2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment