prove that f(x)= | x+1| has no tangent line at (-1 0)
"f(x)=|x+1|,\\ \\ x_0=-1,\\ f(x_0)=0"
"\\lim\\limits_{h\\rightarrow 0+}\\frac{f(x_0+h)-f(x_0)}{h}= \\lim\\limits_{h\\rightarrow 0+}\\frac{|-1+h+1|-0}{h}= \\lim\\limits_{h\\rightarrow 0+}\\frac{h}{h}=1"
"\\lim\\limits_{h\\rightarrow 0-}\\frac{f(x_0+h)-f(x_0)}{h}= \\lim\\limits_{h\\rightarrow 0-}\\frac{|-1+h+1|-0}{h}= \\lim\\limits_{h\\rightarrow 0-}\\frac{-h}{h}=-1"
So, "\\lim\\limits_{h\\rightarrow 0}\\frac{f(x_0+h)-f(x_0)}{h}" doesn’t exist and isn’t either "\\infty" or "-\\infty" .
Then the graph of "f" has no tangent line at "(-1,\\ 0)" .
Comments
Leave a comment