Answer to Question #332448 in Calculus for godwin

Question #332448

prove that f(x)= | x+1| has no tangent line at (-1 0)


1
Expert's answer
2022-04-25T12:19:50-0400

f(x)=x+1,  x0=1, f(x0)=0f(x)=|x+1|,\ \ x_0=-1,\ f(x_0)=0


limh0+f(x0+h)f(x0)h=limh0+1+h+10h=limh0+hh=1\lim\limits_{h\rightarrow 0+}\frac{f(x_0+h)-f(x_0)}{h}= \lim\limits_{h\rightarrow 0+}\frac{|-1+h+1|-0}{h}= \lim\limits_{h\rightarrow 0+}\frac{h}{h}=1


limh0f(x0+h)f(x0)h=limh01+h+10h=limh0hh=1\lim\limits_{h\rightarrow 0-}\frac{f(x_0+h)-f(x_0)}{h}= \lim\limits_{h\rightarrow 0-}\frac{|-1+h+1|-0}{h}= \lim\limits_{h\rightarrow 0-}\frac{-h}{h}=-1


So, limh0f(x0+h)f(x0)h\lim\limits_{h\rightarrow 0}\frac{f(x_0+h)-f(x_0)}{h} doesn’t exist and isn’t either \infty or -\infty .


Then the graph of ff has no tangent line at (1, 0)(-1,\ 0) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment