f(x)=∣x+1∣, x0=−1, f(x0)=0
h→0+limhf(x0+h)−f(x0)=h→0+limh∣−1+h+1∣−0=h→0+limhh=1
h→0−limhf(x0+h)−f(x0)=h→0−limh∣−1+h+1∣−0=h→0−limh−h=−1
So, h→0limhf(x0+h)−f(x0) doesn’t exist and isn’t either ∞ or −∞ .
Then the graph of f has no tangent line at (−1, 0) .
Comments
Leave a comment