Find the volume of the solid formed by the region bounded by the functions
y = 6 - 2x - x^2, y = x + 6
y=6−2x−x2,y=x+6y= 6 -2x -x^2, y = x+6y=6−2x−x2,y=x+6
Find the intersection:
{y=6−2x−x2y=x+6→x+6=6−2x−x2x2+3x=0x(x+3)=0x=0,x=−3\begin{cases} y=6-2x-x^2\\ y= x+6 \end{cases} \rightarrow x+6=6-2x-x^2\\ x^2+3x=0\\ x(x+3)=0\\ x =0, x = -3{y=6−2x−x2y=x+6→x+6=6−2x−x2x2+3x=0x(x+3)=0x=0,x=−3
So V=π∫−30(6−2x−x2)2−(x+6)2dx=π∫−30(x4+4x3−9x2−36x)dx=π(x55+4x44−9x33−36x22)∣−30=−π(−2435+81+81−162)=π2435V =\pi \int_{-3}^0 (6-2x-x^2)^2-(x+6)^2dx =\pi\int_{-3}^0(x^4+4x^3-9x^2-36x)dx = \pi (\cfrac{x^5}{5}+\cfrac{4x^4}{4} -\cfrac{9x^3}{3}-\cfrac{36x^2}{2}) \Big|_{-3}^0 = -\pi(-\cfrac{243}{5} +81 +81-162) = \pi\cfrac{243}{5}V=π∫−30(6−2x−x2)2−(x+6)2dx=π∫−30(x4+4x3−9x2−36x)dx=π(5x5+44x4−39x3−236x2)∣∣−30=−π(−5243+81+81−162)=π5243
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment