Answer to Question #332257 in Calculus for Raul

Question #332257

Find the volume of the solid formed by the region bounded by the functions


y = 6 - 2x - x^2, y = x + 6


1
Expert's answer
2022-04-27T01:29:28-0400

y=62xx2,y=x+6y= 6 -2x -x^2, y = x+6

Find the intersection:

{y=62xx2y=x+6x+6=62xx2x2+3x=0x(x+3)=0x=0,x=3\begin{cases} y=6-2x-x^2\\ y= x+6 \end{cases} \rightarrow x+6=6-2x-x^2\\ x^2+3x=0\\ x(x+3)=0\\ x =0, x = -3

So V=π30(62xx2)2(x+6)2dx=π30(x4+4x39x236x)dx=π(x55+4x449x3336x22)30=π(2435+81+81162)=π2435V =\pi \int_{-3}^0 (6-2x-x^2)^2-(x+6)^2dx =\pi\int_{-3}^0(x^4+4x^3-9x^2-36x)dx = \pi (\cfrac{x^5}{5}+\cfrac{4x^4}{4} -\cfrac{9x^3}{3}-\cfrac{36x^2}{2}) \Big|_{-3}^0 = -\pi(-\cfrac{243}{5} +81 +81-162) = \pi\cfrac{243}{5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment