Differentiation. Find the derivative of the given function. Use quotient rule.
f(x)= (x^-1)/(x+x^-1)
f(x)=x−1x+x−1f(x)=\frac{x^{-1}}{x+x^{-1}}f(x)=x+x−1x−1
f′(x)=(x−1)′(x+x−1)−(x−1)(x+x−1)′(x+x−1)2=f'(x)=\frac{(x^{-1})'(x+x^{-1})-(x^{-1})(x+x^{-1})'}{(x+x^{-1})^2}=f′(x)=(x+x−1)2(x−1)′(x+x−1)−(x−1)(x+x−1)′=−x−2(x+x−1)−(x−1)(1−x−2)(x+x−1)2=\frac{-x^{-2}(x+x^{-1})-(x^{-1})(1-x^{-2})}{(x+x^{-1})^2}=(x+x−1)2−x−2(x+x−1)−(x−1)(1−x−2)=−x−1−x−3−x−1+x−3(x+x−1)2=\frac{-x^{-1}-x^{-3}-x^{-1}+x^{-3}}{(x+x^{-1})^2}=(x+x−1)2−x−1−x−3−x−1+x−3=−2x−1(x+x−1)2=\frac{-2x^{-1}}{(x+x^{-1})^2}=(x+x−1)2−2x−1=−2x(x2+1)2\frac{-2x}{(x^2+1)^2}(x2+1)2−2x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments