Question #332141

Differentiation. Find the derivative of the given function. Use quotient rule.



f(x)= (x^-1)/(x+x^-1)

1
Expert's answer
2022-04-22T13:38:17-0400

f(x)=x1x+x1f(x)=\frac{x^{-1}}{x+x^{-1}}

f(x)=(x1)(x+x1)(x1)(x+x1)(x+x1)2=f'(x)=\frac{(x^{-1})'(x+x^{-1})-(x^{-1})(x+x^{-1})'}{(x+x^{-1})^2}=x2(x+x1)(x1)(1x2)(x+x1)2=\frac{-x^{-2}(x+x^{-1})-(x^{-1})(1-x^{-2})}{(x+x^{-1})^2}=x1x3x1+x3(x+x1)2=\frac{-x^{-1}-x^{-3}-x^{-1}+x^{-3}}{(x+x^{-1})^2}=2x1(x+x1)2=\frac{-2x^{-1}}{(x+x^{-1})^2}=2x(x2+1)2\frac{-2x}{(x^2+1)^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS