Check whether the series sum_(n=1)^(oo)(nx)/(n^(4)+x^(3)) x in 0 alpha is uniformly convergent or not
ANSWER The series "\\sum_{n=1}^{\\infty}\\frac{nx}{n^{4}+x^{3}}" is uniformly convergent on "\\left [ 0, \\alpha \\right ]" .
EXPLANATION.
Since a) "0\\leq nx\\leq n \\alpha"
b) "n^{4}+x^{3}\\geq n^{4}"
for "x\\in[0,\\alpha]" and "n\\geq1" , then
"0\\leq\\frac{nx}{n^{4}+^x{3}}\\leq\\frac{n\\alpha}{n^{4}}=\\frac{\\alpha}{n^{3}}" .
The series "\\sum_{n=1}^{\\infty}\\frac{\\alpha}{n^{3}}=\\alpha\\sum_{n=1}^{\\infty }\\frac{1}{n^{3}}" is convergent , because the series "\\sum_{n=1}^{\\infty }\\frac{1}{n^{3}}" is a "p"-series for "p=3" .
Therefore, by the Weierstrass M-Test the series "\\sum_{n=1}^{\\infty}\\frac{nx}{n^{4}+x^{3}}" is uniformly convergent on "\\left [ 0, \\alpha \\right ]" .
Comments
Leave a comment