Find area bounded by f(x) =x^2 and g(x) =x+2
The sought area is painted red. We can find it using integration, so
"S=\\int_{-1}^{2}(x+2-x^2)dx={\\frac {x^2} 2}_{x=-1}^{x=2}+2x_{x=-1}^{x=2}-{\\frac {x^3} 3}|_{x=-1}^{x=2}=2-{\\frac 1 2}+4+2-{\\frac 8 3}+{\\frac 1 3}={\\frac {31} 6}"
Comments
Leave a comment