Find the area of the region between the x-axis and the graph of f(x) from a=-1, to b=2, if f (x)=e^2x+3
S=∫−12(e2x+3)dx=(12e2x+3x)∣−12=12e4+6−S=\int_{-1}^2 (e^{2x}+3)dx=(\frac12e^{2x}+3x)|_{-1}^2=\frac12e^{4}+6-S=∫−12(e2x+3)dx=(21e2x+3x)∣−12=21e4+6−(12e−2−3)=12(e4−e−2)+9≈36.231(\frac12e^{-2}-3)=\frac12(e^4-e^{-2})+9\approx 36.231(21e−2−3)=21(e4−e−2)+9≈36.231
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments