A particle moves along the space curve r=e-t(cost i+sint j+k). Find the magnitude of the veloctiy at any time t.
Select one:
A 5e-1
B 5e-t
C 3e-1
D 3e-t
drdt=ddt(e−tcost,e−tsint,e−t)=(−e−tcost−e−tsint,−e−tsint+e−tcost,−e−t)∣drdt∣=(−e−tcost−e−tsint)2+(−e−tsint+e−tcost)2+(−e−t)2==3e−t\frac{dr}{dt}=\frac{d}{dt}\left( e^{-t}\cos t,e^{-t}\sin t,e^{-t} \right) =\left( -e^{-t}\cos t-e^{-t}\sin t,-e^{-t}\sin t+e^{-t}\cos t,-e^{-t} \right) \\\left| \frac{dr}{dt} \right|=\sqrt{\left( -e^{-t}\cos t-e^{-t}\sin t \right) ^2+\left( -e^{-t}\sin t+e^{-t}\cos t \right) ^2+\left( -e^{-t} \right) ^2}=\\=\sqrt{3}e^{-t}dtdr=dtd(e−tcost,e−tsint,e−t)=(−e−tcost−e−tsint,−e−tsint+e−tcost,−e−t)∣∣dtdr∣∣=(−e−tcost−e−tsint)2+(−e−tsint+e−tcost)2+(−e−t)2==3e−t
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments