Question #318664

If u=x(1-y) and v=xy, then find the value of the Jacobian ∂u,v∂(x,y)



Select one:



A -x




B x2




C -x2




D x


1
Expert's answer
2022-03-29T08:51:56-0400

(u,v)(x,y)=uxvxuyuy=1yyxx=x(1y)+xy=x\frac{\partial \left( u,v \right)}{\partial \left( x,y \right)}=\left| \begin{matrix} \frac{\partial u}{\partial x}& \frac{\partial v}{\partial x}\\ \frac{\partial u}{\partial y}& \frac{\partial u}{\partial y}\\\end{matrix} \right|=\left| \begin{matrix} 1-y& y\\ -x& x\\\end{matrix} \right|=x\left( 1-y \right) +xy=x

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS