Question #318979

Find the consumer's surplus at $P = 5$ for the following demand functions:

(a) P=25-2Q,

(b) P= 10/sqrt {Q} 


1
Expert's answer
2022-03-29T17:23:35-0400

a)

P=252QP=25-2Q

but P=5P=5

5=252Q5=25-2Q

2Q=202Q=20

Q=10Q=10

Consumer surplus =0QD(Q)dQPQ=\intop^Q_0D(Q)dQ-PQ

010(252Q)dQ5(10)\intop^{10}_0(25-2Q)dQ-5(10)

=[25QQ2]01050=[25Q-Q^2]_0^{10}-50

=25010050=250-100-50

=100=100


b)

P=10QP=\frac{10}{\sqrt{Q}}

P=5P=5

5=10Q5=\frac{10}{\sqrt{Q}}

Q=2\sqrt{Q}=2

Q=4Q=4

Consumer surplus =0410QdQ20=\intop^4_0\frac{10}{\sqrt{Q}}dQ-20

=10[2Q]0420=10[2\sqrt{Q}]^4_0-20

=20(40)20=20(\sqrt{4}-0)-20

=4020=40-20

=20=20


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS