Find the consumer's surplus at $P = 5$ for the following demand functions:
(a) P=25-2Q,
(b) P= 10/sqrt {Q}
a)
P=25−2QP=25-2QP=25−2Q
but P=5P=5P=5
5=25−2Q5=25-2Q5=25−2Q
2Q=202Q=202Q=20
Q=10Q=10Q=10
Consumer surplus =∫0QD(Q)dQ−PQ=\intop^Q_0D(Q)dQ-PQ=∫0QD(Q)dQ−PQ
∫010(25−2Q)dQ−5(10)\intop^{10}_0(25-2Q)dQ-5(10)∫010(25−2Q)dQ−5(10)
=[25Q−Q2]010−50=[25Q-Q^2]_0^{10}-50=[25Q−Q2]010−50
=250−100−50=250-100-50=250−100−50
=100=100=100
b)
P=10QP=\frac{10}{\sqrt{Q}}P=Q10
P=5P=5P=5
5=10Q5=\frac{10}{\sqrt{Q}}5=Q10
Q=2\sqrt{Q}=2Q=2
Q=4Q=4Q=4
Consumer surplus =∫0410QdQ−20=\intop^4_0\frac{10}{\sqrt{Q}}dQ-20=∫04Q10dQ−20
=10[2Q]04−20=10[2\sqrt{Q}]^4_0-20=10[2Q]04−20
=20(4−0)−20=20(\sqrt{4}-0)-20=20(4−0)−20
=40−20=40-20=40−20
=20=20=20
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments