(1) integral of {(10x^9+40x^4+3)√(x^10+8x^5+3x+5)} DX
(2) integral of {1/[(x-5)(x^2+4)]} dx
1
Expert's answer
2022-03-22T04:38:48-0400
1.
∫(10x9+40x4+3)x10+8x5+3x+5dx Substitute u=x10+8x5+3x+5⟶dxdu=10x9+40x4+3⟶dx=10x9+40x4+31du:=∫udu Apply power rule:∫undu=n+1un+1+C with n=21=32u23 Substitute back u=x10+8x5+3x+5:=32(x10+8x5+3x+5)23+C Hence, ∫(10x9+40x4+3)x10+8x5+3x+5dx=32(x10+8x5+3x+5)23+C
2.
∫(x−5)(x2+4)1dx Perform partial fraction decomposition:=∫(29(x−5)1−29(x2+4)x+5)dx Apply linearity: =291∫x−51dx−291∫x2+4x+5dxNow solving: ∫x−51dxdxdu=1⟶dx=du=∫u1du=291∫x−51dx−291∫x2+4x+5dx Now solving: ∫x−51dx Substitute u=x−5⟶dxdu=1⟶dx=du:=∫u1du This is a standard integral:=ln(u)+C Substitute backu=x−5=ln(x−5)+C Now solving:∫x2+4x+5dx Expand:=∫(x2+4x+x2+45)dx=∫x2+4xdx+5∫x2+41dx
Now solving:∫x2+4xdx Substitute u=x2+4⟶dxdu=2x⟶dx=2x1du:=21∫u1du Now solving:∫u1du Use previous result:=ln(u)+C1 Plug in solved integrals:21∫u1du=2ln(u)+CSubstitute back u=x2+4:=2ln(x2+4)+C Now solving:∫x2+41dx Substitute u=2x⟶dxdu=21⟶dx=2du:=∫4u2+42du
Simplify: =21∫u2+11du Now solving:∫u2+11du This is a standard integral:=arctan(u)+C1 Plug in solved integrals:21∫u2+11du=2arctan(u)+C Substitute back u=2x : =2arctan(2x)+C Plug in solved integrals:∫x2+4xdx+5∫x2+41dx=2ln(x2+4)+25arctan(2x)+C Plug in solved integrals:291∫x−51dx−291∫x2+4x+5dx=−58ln(x2+4)−585arctan(2x)+29ln(x−5)+C
The problem is solved. Apply the absolute value function to arguments oflogarithm functions in order to extend the antiderivative’s domain:=−=∫(x−5)(x2+4)1dx58ln(x2+4)−585arctan(2x)+29ln(∣x−5∣)+C−58ln(x2+4)+5arctan(2x)−2ln(∣x−5∣)+C
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments