ANSWER:The volume of the region is V=4
EXPLANATION
If V is the volume of the solid lying vertically above R and below the surface z=f(x,y) and f(x,y)≥0 on R , then
V=∬Rf(x,y)dA
So , V=∫02∫042ydxdy V=∫02∫042ydxdy=∫02(2y)⋅(∫04dx)dy=4∫02(2y)dy=2[2y2]02=(22)−0=4
Comments