ANSWER: The average value of F(x,y,z)=xyz throughout the cubical region D is 1.
EXPLANATION. The average value of F(x,y,z)=xyz throughout the cubical region D is the number
Favg=VolumeofR1∭RF(x,y,z)dV .
VolumeofR=∭RdV=∫02∫02∫02dxdydz=(∫02dx)⋅(∫02dy)⋅(∫02dz)==23=8,∭RF(x,y,z)dV=∫02∫02∫02xyzdxdydz=(∫02xdx)⋅(∫02ydy)⋅(∫02zdz)=([2x2]02)⋅([2y2]02)⋅([2z2]02)=222−0⋅222−0⋅222−0=8.
Comments