Find the volume generated if the region enclosed by y = x² and the line y = 2x is revolve about the x-axis. Answer in 2 decimal places.
y=x2,y=2x.y=x^2, y=2x.\\y=x2,y=2x.
x2−2x=0,x(x−2)=0,x1=0,x2=2.V=π∫02(4x2−x4)dx==π(43x3−15x5)∣02==π(4323−1525)==π(323−325)==32π(13−15)==64π15=13.40x^2-2x=0, x(x-2)=0,\\ x_1=0, x_2=2.\\ V=\pi \int^2_0 (4x^2-x^4)dx=\\ =\pi(\frac{4}{3}x^3-\frac{1}{5}x^5)|^2_0=\\ =\pi(\frac{4}{3}2^3-\frac{1}{5}2^5)=\\ =\pi(\frac{32}{3}-\frac{32}{5})=\\ =32\pi(\frac{1}{3}-\frac{1}{5})=\\ =\frac{64\pi}{15}=13.40x2−2x=0,x(x−2)=0,x1=0,x2=2.V=π∫02(4x2−x4)dx==π(34x3−51x5)∣02==π(3423−5125)==π(332−532)==32π(31−51)==1564π=13.40
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments