The temperature at a point is given by T = xyz. Find the average temperature in the cube
with opposite corners at (0,0,0) and (2,2,2).
T=xyz(0,0,0),(2,2,2)12⋅2⋅2∫02∫02∫02xyzdxdydz=18∫02∫02xyz22∣02dxdy==18∫02∫022xydxdy=14∫02xy22∣02dx=14∫022xdx==12x22∣02=12⋅2=1T=xyz\\ (0,0,0), (2,2,2)\\ \frac{1}{2\cdot2\cdot2} \int_0^2\int_0^2\int_0^2xyzdxdydz=\frac{1}{8}\int_0^2\int_0^2xy\frac{z^2}{2}|_0^2dxdy=\\ =\frac{1}{8}\int_0^2\int_0^22xydxdy=\frac{1}{4}\int_0^2x\frac{y^2}{2}|_0^2dx=\frac{1}{4}\int_0^22xdx=\\ =\frac{1}{2}\frac{x^2}{2}|_0^2=\frac{1}{2}\cdot2=1T=xyz(0,0,0),(2,2,2)2⋅2⋅21∫02∫02∫02xyzdxdydz=81∫02∫02xy2z2∣02dxdy==81∫02∫022xydxdy=41∫02x2y2∣02dx=41∫022xdx==212x2∣02=21⋅2=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments