If ln=int_zero to infinity e^-x sin^n (x)dx,prove that (1+n^2)ln=n(n-1)ln-2 for n≥2.
"In = \\int\\limits_0^\\infty {{e^{ - x}}\\sin \\left( {nx} \\right)\\,dx} \\"
We solve the given integral by integration by parts method
"u = {e^{ - x}}\\" and "dv = \\sin \\left( {nx} \\right)\\,dx\\"
"du = - {e^{ - x}}dx\\" and "v = - \\frac{{\\cos \\left( {nx} \\right)}}{n}"
ThenÂ
"In = \\int\\limits_0^\\infty {{e^{ - x}}\\sin \\left( {nx} \\right)\\,dx} \\"
"In = \\left[ { - \\frac{{{e^{ - x}}\\cos \\left( {nx} \\right)}}{n}} \\right]_0^\\infty - \\int\\limits_0^\\infty {\\left( { - \\frac{{\\cos \\left( {nx} \\right)}}{n}} \\right)\\left( { - {e^{ - x}}} \\right)\\,dx}"
"In = - \\frac{1}{n}\\left[ {\\frac{{\\cos \\left( {nx} \\right)}}{{{e^x}}}} \\right]_0^\\infty - \\frac{1}{n}\\int\\limits_0^\\infty {{e^{ - x}}\\cos \\left( {nx} \\right)\\,dx}"
"In = - \\frac{1}{n}\\left[ {\\frac{{\\cos \\left( {n\\left( \\infty \\right)} \\right)}}{{{e^\\infty }}} - \\frac{{\\cos \\left( {n\\left( 0 \\right)} \\right)}}{{{e^{\\left( 0 \\right)}}}}} \\right] - \\frac{1}{n}\\int\\limits_0^\\infty {{e^{ - x}}\\cos \\left( {nx} \\right)\\,dx}"
"In = - \\frac{1}{n}\\left[ {0 - 1} \\right] - \\frac{1}{n}\\int\\limits_0^\\infty {{e^{ - x}}\\cos \\left( {nx} \\right)\\,dx}"
"In = \\frac{1}{n} - \\frac{1}{n}\\int\\limits_0^\\infty {{e^{ - x}}\\cos \\left( {nx} \\right)\\,dx}"
 "\\begin{array}{l}\nIn = \\frac{1}{n} - \\frac{1}{n}\\int\\limits_0^\\infty {{e^{ - x}}\\cos \\left( {nx} \\right)\\,dx} \\\\\n\\end{array}\\"
 "\\begin{array}{l}\nIn = \\frac{1}{n} - \\frac{1}{n}\\left( I \\right) & & & ... & \\left( 1 \\right)\n\\end{array}\\"
Now consider
"I = \\int\\limits_0^\\infty {{e^{ - x}}\\cos \\left( {nx} \\right)\\,dx} \\"
Solving by integration by partsÂ
"u = {e^{ - x}}" and "dv = \\cos \\left( {nx} \\right)\\,dx"
"du = - {e^{ - x}}dx\\" and "v = \\frac{{\\sin \\left( {nx} \\right)}}{n}"
Then
"I = \\left[ {\\frac{{{e^{ - x}}\\sin \\left( {nx} \\right)}}{n}} \\right]_0^\\infty - \\int\\limits_0^\\infty {\\frac{{ - {e^{ - x}}\\sin \\left( {nx} \\right)}}{n}dx}"
"I = \\frac{1}{n}\\left[ {\\frac{{\\sin \\left( {nx} \\right)}}{{{e^x}}}} \\right]_0^\\infty + \\frac{1}{n}\\int\\limits_0^\\infty {{e^{ - x}}\\sin \\left( {nx} \\right)dx}"
"I = \\frac{1}{n}\\left[ {0 - 0} \\right]_0^\\infty + \\frac{1}{n}\\left( {In} \\right)"
"I = \\frac{1}{n}\\left( {In} \\right)"
Hence from (1), we haveÂ
"In = \\frac{1}{n} - \\frac{1}{n}\\left( {\\frac{1}{n}\\left( {In} \\right)} \\right)\\\\"
"In = \\frac{1}{n} - \\frac{1}{{{n^2}}}\\left( {In} \\right)\\\\"
"In\\left( {1 + \\frac{1}{{{n^2}}}} \\right) = \\frac{1}{n}\\\\"
"In = \\frac{1}{n} \\times \\frac{{{n^2}}}{{1 + {n^2}}}\\\\"
"In = \\frac{n}{{1 + {n^2}}}"
Therefore,
"\\int\\limits_0^\\infty {{e^{ - x}}\\sin \\left( {nx} \\right)\\,dx} \n = \\frac{n}{{1 + {n^2}}}"
For the given (1+n^2)ln=n(n-1)ln-2 for n≥2, its not clear. However, if a weel typed equation is added, can be proved accordingly.
Comments
Leave a comment