{F} Calculate the approximate value of 10 to four decimal places by taking the first four
terms of an appropriate Taylor’s series.
Question contains mistake. We have to approximate the value of "\\sqrt{10}."
Taylor series is given as
"f(a+h)=f(a)+h.f'(a)+{h^2\\over 2!}f''(a)+{h^3\\over 3!}f'''(a)+..."
Let's Rewrite "10" in the following form:
"10=9+1"
Now, let's have a function that will enable us use Taylor series method
"f(10)=f(9+1)"
"\\implies" "a=9" and "h=1"
Since we are asked to find the square root
"\\implies f(a)=a^{1\\over 2} \\implies f(a+1)=\\sqrt {10}"
"\\implies f(a)=a^{1\\over 2} \\implies f(a+1)=\\sqrt {10}"
Substituting the value of "a" we have
"f(a)=9^{1\\over 2} =3"
"f'(a)={1\\over 2}a^{{1\\over 2}-1}={1\\over 2}a^{-{1\\over 2}}={{1\\over 2}\\over a^{1\\over2}}={1\\over 2a^{1\\over 2}}"
Substituting the value of "a" we have
"f'(a)={1\\over 2(9)^{1\\over 2}}=0.166..."
"f''(a)=(-{1\\over 2})({1\\over 2})a^{-{1\\over 2}-1}=-{1\\over 4}a^{-{3\\over 2}}={-{1\\over 4}\\over a^{3\\over 2}}=-{1\\over 4a^{3\\over 2}}"
Substituting the value of "a" we have
"f''(a)=-{1\\over 4(9)^{3\\over 2}}=0.00925"
"f'''(a)=({-{3\\over 2}})({-{1\\over 4}})a^{-{3\\over 2}-1}={3\\over 8}a^{-{5\\over 2}}={{3\\over 8}\\over a^{5\\over 2}}={3\\over 8a^{5\\over 2}}"
Substituting the value of "a" we have
"f'''(a)={3\\over 8(9)^{5\\over 2}}=0.000514"
From Taylor series method, we have
"\\sqrt {10}=f(a+1)=f(a)+1.f'(a)+{1^2\\over 2!}f''(a)+{1^3\\over 3!}f'''(a)+..."
"\\sqrt {10}=f(a+1)=f(a)+1.f'(a)+{1^2\\over 2!}f''(a)+{1^3\\over 3!}f'''(a)+..."
But
"f(a)=3" , "f'(a)=0.166.." , "f''(a)=0.00925" , "f'''(a)=0.000514"
"\\implies \\sqrt {10}= f(a+1)=5+0.1+{0.00925\\over 2}+{0.000514\\over 3!}=5.10471"
"\\implies \\sqrt {10}= f(a+1)=5+0.1+{0.00925\\over 2}+{0.000514\\over 3!}=5.10471"
"\\therefore" "\\sqrt{10}=5.10471"
"\\sqrt{10}=5.10471"
"\\sqrt{10}=5.1047"
"\\sqrt{10}=5.1047" correct to four decimal places
Comments
Leave a comment