Question contains mistake. We have to approximate the value of 10 . \sqrt{10}. 10 .
Taylor series is given as
f ( a + h ) = f ( a ) + h . f ′ ( a ) + h 2 2 ! f ′ ′ ( a ) + h 3 3 ! f ′ ′ ′ ( a ) + . . . f(a+h)=f(a)+h.f'(a)+{h^2\over 2!}f''(a)+{h^3\over 3!}f'''(a)+... f ( a + h ) = f ( a ) + h . f ′ ( a ) + 2 ! h 2 f ′′ ( a ) + 3 ! h 3 f ′′′ ( a ) + ...
Let's Rewrite 10 10 10 in the following form:
10 = 9 + 1 10=9+1 10 = 9 + 1
Now, let's have a function that will enable us use Taylor series method
f ( 10 ) = f ( 9 + 1 ) f(10)=f(9+1) f ( 10 ) = f ( 9 + 1 )
⟹ \implies ⟹ a = 9 a=9 a = 9 and h = 1 h=1 h = 1
Since we are asked to find the square root
⟹ f ( a ) = a 1 2 ⟹ f ( a + 1 ) = 10 \implies f(a)=a^{1\over 2} \implies f(a+1)=\sqrt {10} ⟹ f ( a ) = a 2 1 ⟹ f ( a + 1 ) = 10
⟹ f ( a ) = a 1 2 ⟹ f ( a + 1 ) = 10 \implies f(a)=a^{1\over 2} \implies f(a+1)=\sqrt {10} ⟹ f ( a ) = a 2 1 ⟹ f ( a + 1 ) = 10
Substituting the value of a a a we have
f ( a ) = 9 1 2 = 3 f(a)=9^{1\over 2} =3 f ( a ) = 9 2 1 = 3
f ′ ( a ) = 1 2 a 1 2 − 1 = 1 2 a − 1 2 = 1 2 a 1 2 = 1 2 a 1 2 f'(a)={1\over 2}a^{{1\over 2}-1}={1\over 2}a^{-{1\over 2}}={{1\over 2}\over a^{1\over2}}={1\over 2a^{1\over 2}} f ′ ( a ) = 2 1 a 2 1 − 1 = 2 1 a − 2 1 = a 2 1 2 1 = 2 a 2 1 1
Substituting the value of a a a we have
f ′ ( a ) = 1 2 ( 9 ) 1 2 = 0.166... f'(a)={1\over 2(9)^{1\over 2}}=0.166... f ′ ( a ) = 2 ( 9 ) 2 1 1 = 0.166...
f ′ ′ ( a ) = ( − 1 2 ) ( 1 2 ) a − 1 2 − 1 = − 1 4 a − 3 2 = − 1 4 a 3 2 = − 1 4 a 3 2 f''(a)=(-{1\over 2})({1\over 2})a^{-{1\over 2}-1}=-{1\over 4}a^{-{3\over 2}}={-{1\over 4}\over a^{3\over 2}}=-{1\over 4a^{3\over 2}} f ′′ ( a ) = ( − 2 1 ) ( 2 1 ) a − 2 1 − 1 = − 4 1 a − 2 3 = a 2 3 − 4 1 = − 4 a 2 3 1
Substituting the value of a a a we have
f ′ ′ ( a ) = − 1 4 ( 9 ) 3 2 = 0.00925 f''(a)=-{1\over 4(9)^{3\over 2}}=0.00925 f ′′ ( a ) = − 4 ( 9 ) 2 3 1 = 0.00925
f ′ ′ ′ ( a ) = ( − 3 2 ) ( − 1 4 ) a − 3 2 − 1 = 3 8 a − 5 2 = 3 8 a 5 2 = 3 8 a 5 2 f'''(a)=({-{3\over 2}})({-{1\over 4}})a^{-{3\over 2}-1}={3\over 8}a^{-{5\over 2}}={{3\over 8}\over a^{5\over 2}}={3\over 8a^{5\over 2}} f ′′′ ( a ) = ( − 2 3 ) ( − 4 1 ) a − 2 3 − 1 = 8 3 a − 2 5 = a 2 5 8 3 = 8 a 2 5 3
Substituting the value of a a a we have
f ′ ′ ′ ( a ) = 3 8 ( 9 ) 5 2 = 0.000514 f'''(a)={3\over 8(9)^{5\over 2}}=0.000514 f ′′′ ( a ) = 8 ( 9 ) 2 5 3 = 0.000514
From Taylor series method, we have
10 = f ( a + 1 ) = f ( a ) + 1. f ′ ( a ) + 1 2 2 ! f ′ ′ ( a ) + 1 3 3 ! f ′ ′ ′ ( a ) + . . . \sqrt {10}=f(a+1)=f(a)+1.f'(a)+{1^2\over 2!}f''(a)+{1^3\over 3!}f'''(a)+... 10 = f ( a + 1 ) = f ( a ) + 1. f ′ ( a ) + 2 ! 1 2 f ′′ ( a ) + 3 ! 1 3 f ′′′ ( a ) + ...
10 = f ( a + 1 ) = f ( a ) + 1. f ′ ( a ) + 1 2 2 ! f ′ ′ ( a ) + 1 3 3 ! f ′ ′ ′ ( a ) + . . . \sqrt {10}=f(a+1)=f(a)+1.f'(a)+{1^2\over 2!}f''(a)+{1^3\over 3!}f'''(a)+... 10 = f ( a + 1 ) = f ( a ) + 1. f ′ ( a ) + 2 ! 1 2 f ′′ ( a ) + 3 ! 1 3 f ′′′ ( a ) + ...
But
f ( a ) = 3 f(a)=3 f ( a ) = 3 , f ′ ( a ) = 0.166.. f'(a)=0.166.. f ′ ( a ) = 0.166.. , f ′ ′ ( a ) = 0.00925 f''(a)=0.00925 f ′′ ( a ) = 0.00925 , f ′ ′ ′ ( a ) = 0.000514 f'''(a)=0.000514 f ′′′ ( a ) = 0.000514
⟹ 10 = f ( a + 1 ) = 5 + 0.1 + 0.00925 2 + 0.000514 3 ! = 5.10471 \implies \sqrt {10}= f(a+1)=5+0.1+{0.00925\over 2}+{0.000514\over 3!}=5.10471 ⟹ 10 = f ( a + 1 ) = 5 + 0.1 + 2 0.00925 + 3 ! 0.000514 = 5.10471
⟹ 10 = f ( a + 1 ) = 5 + 0.1 + 0.00925 2 + 0.000514 3 ! = 5.10471 \implies \sqrt {10}= f(a+1)=5+0.1+{0.00925\over 2}+{0.000514\over 3!}=5.10471 ⟹ 10 = f ( a + 1 ) = 5 + 0.1 + 2 0.00925 + 3 ! 0.000514 = 5.10471
∴ \therefore ∴ 10 = 5.10471 \sqrt{10}=5.10471 10 = 5.10471
10 = 5.10471 \sqrt{10}=5.10471 10 = 5.10471
10 = 5.1047 \sqrt{10}=5.1047 10 = 5.1047
10 = 5.1047 \sqrt{10}=5.1047 10 = 5.1047 correct to four decimal places
Comments