what is the centroid of x^2=y, x+y=6, x=0. with solution
Solution:
"x^2=y, x+y=6\n\\\\ \\Rightarrow f(x)=x^2, g(x)=6-x"
"a=-3,b=2"
Now, "A=\\int_a^b[f(x)-g(x)]dx"
"A=\\int_{-3}^2[x^2-6+x]dx\n\\\\=[\\dfrac {x^3}3-6x+\\dfrac{x^2}2]_{-3}^2\n\\\\=[\\dfrac {8}3-12+2]-[-9+18+\\dfrac{9}2]\n\\\\=-\\dfrac{125}6\n\\\\=\\dfrac{125}6" [neglecting negative sign as it is area]
Now, "\\bar x=\\dfrac 1A\\int_a^bx[f(x)-g(x)]dx"
"\\bar x=\\dfrac {6}{125}\\int_{-3}^2x[x^2-6+x]dx\n\\\\=\\dfrac {6}{125}\\int_{-3}^2[x^3-6x+x^2]dx\n\\\\=\\dfrac {6}{125}[\\dfrac{x^4}4-3x^2+\\dfrac{x^3}3]_{-3}^2\n\\\\=\\dfrac{6}{125}\\cdot \\dfrac{125}{12}\n\\\\=\\dfrac{1}{2}"
"\\bar y=\\dfrac 1A\\int_a^b(\\dfrac{f(x)+g(x)}2)[f(x)-g(x)]dx\n\\\\=\\dfrac {6}{125}\\int_{-3}^2(\\dfrac{x^2+6-x}2)[x^2-6+x]dx\n\\\\=\\dfrac {3}{125}\\int_{-3}^2(x^4-x^2+12x-36)dx\n\\\\=\\dfrac {3}{125}[\\dfrac{x^5}{5}-\\dfrac{x^3}{3}+6x^2-36x]_{-3}^2\n\\\\=\\dfrac{6}{125}\\left(-\\dfrac{500}{3}\\right)\n\\\\=-8"
Thus, centroid is "(\\dfrac12,-8)".
Comments
Leave a comment