Solution:
x2=y,x+y=6⇒f(x)=x2,g(x)=6−x
a=−3,b=2
Now, A=∫ab[f(x)−g(x)]dx
A=∫−32[x2−6+x]dx=[3x3−6x+2x2]−32=[38−12+2]−[−9+18+29]=−6125=6125 [neglecting negative sign as it is area]
Now, xˉ=A1∫abx[f(x)−g(x)]dx
xˉ=1256∫−32x[x2−6+x]dx=1256∫−32[x3−6x+x2]dx=1256[4x4−3x2+3x3]−32=1256⋅12125=21
yˉ=A1∫ab(2f(x)+g(x))[f(x)−g(x)]dx=1256∫−32(2x2+6−x)[x2−6+x]dx=1253∫−32(x4−x2+12x−36)dx=1253[5x5−3x3+6x2−36x]−32=1256(−3500)=−8
Thus, centroid is (21,−8).
Comments