Question #297258

what is the centroid of x^2=y, x+y=6, x=0. with solution


1
Expert's answer
2022-02-14T17:29:59-0500

Solution:


x2=y,x+y=6f(x)=x2,g(x)=6xx^2=y, x+y=6 \\ \Rightarrow f(x)=x^2, g(x)=6-x

a=3,b=2a=-3,b=2

Now, A=ab[f(x)g(x)]dxA=\int_a^b[f(x)-g(x)]dx

A=32[x26+x]dx=[x336x+x22]32=[8312+2][9+18+92]=1256=1256A=\int_{-3}^2[x^2-6+x]dx \\=[\dfrac {x^3}3-6x+\dfrac{x^2}2]_{-3}^2 \\=[\dfrac {8}3-12+2]-[-9+18+\dfrac{9}2] \\=-\dfrac{125}6 \\=\dfrac{125}6 [neglecting negative sign as it is area]

Now, xˉ=1Aabx[f(x)g(x)]dx\bar x=\dfrac 1A\int_a^bx[f(x)-g(x)]dx

xˉ=612532x[x26+x]dx=612532[x36x+x2]dx=6125[x443x2+x33]32=612512512=12\bar x=\dfrac {6}{125}\int_{-3}^2x[x^2-6+x]dx \\=\dfrac {6}{125}\int_{-3}^2[x^3-6x+x^2]dx \\=\dfrac {6}{125}[\dfrac{x^4}4-3x^2+\dfrac{x^3}3]_{-3}^2 \\=\dfrac{6}{125}\cdot \dfrac{125}{12} \\=\dfrac{1}{2}

yˉ=1Aab(f(x)+g(x)2)[f(x)g(x)]dx=612532(x2+6x2)[x26+x]dx=312532(x4x2+12x36)dx=3125[x55x33+6x236x]32=6125(5003)=8\bar y=\dfrac 1A\int_a^b(\dfrac{f(x)+g(x)}2)[f(x)-g(x)]dx \\=\dfrac {6}{125}\int_{-3}^2(\dfrac{x^2+6-x}2)[x^2-6+x]dx \\=\dfrac {3}{125}\int_{-3}^2(x^4-x^2+12x-36)dx \\=\dfrac {3}{125}[\dfrac{x^5}{5}-\dfrac{x^3}{3}+6x^2-36x]_{-3}^2 \\=\dfrac{6}{125}\left(-\dfrac{500}{3}\right) \\=-8

Thus, centroid is (12,8)(\dfrac12,-8).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS