Question #297051

<e> Let f

f be a function such that at each point (x,y)

(x,y) on the graph of f

f, the slope is given by dy

dx


=1

2


x−1

4


y

2

dydx=12x−14y2. The graph of f

f passes through the point (1,−2)

(1,−2) and is concave up on the interval 1<x<1.5

1<x<1.5. Let k

k be the approximation for f(1.3)

f(1.3) found by using the locally linear approximation of f

f at x=1

x=1. Which of the following statements about k

k is true?



1
Expert's answer
2022-02-17T18:31:45-0500

Since the function is concave down, it is overestimated and f(x)<0f''(x)<0

y=2yy1y''=2yy'-1

Then:

for k=f(1.2)=5.6k=f(1.2)=5.6 :

2yy1=25.6(5.621.2)1>02yy'-1=2\cdot5.6\cdot(5.6^2-1.2)-1>0

for k=f(1.2)=2.6k=f(1.2)=-2.6 :

2yy1=22.6(2.621.2)1<02yy'-1=-2\cdot2.6\cdot(2.6^2-1.2)-1<0


Answer: statement (k-2.6 and is an overestimate of f(1.2)) is true.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS