Let (u,v)=u^2-v^2,y(u,v)=2uv.
Find the the Jacobian determinant,J(u,v).
Let us first write the Jacobian matrix :
"J = \\begin{pmatrix} \\partial_u x & \\partial_v x \\\\ \\partial _u y & \\partial_v y \\end{pmatrix}"
Now let us calculate every term in this matrix :
"\\begin{cases} \\partial_ u x = 2u \\\\ \\partial_v x = -2v \\\\ \\partial _u y = 2v \\\\ \\partial_v y = 2u \\end{cases}"
And now we will calculate the determinant :
"\\det J = 2u \\cdot 2u - 2v\\cdot (-2v) = 4(u^2+v^2)"
Comments
Leave a comment