Question #297115

Determine which of the following


pairs of functions are independent. Using the Jacobian matrix



a) u= x cos y and v=x sin y;



b)u= x + y and v= y/x+y;



c)u=x-2y and v=x^2 +4y^2-4xy+3x-6y;



d)u= x + 2y and v= x^2-y^2+2xy-x

1
Expert's answer
2022-02-15T16:28:04-0500

ANSWER

Functions continuously differentiable are independent in the domain DD if the Jacobian  J=(u,v)(x,y)=uxuyvxvyJ=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix} \frac{\partial u }{\partial x} &\frac{\partial u }{\partial y} &\\ \frac{\partial v }{\partial x} & \frac{\partial v }{\partial y} & \end{vmatrix} is nonzero.

a)

J=(u,v)(x,y)= cosysiny xsiny xcosy=xJ=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix} \ { \cos y } & {\sin y} \\ \ { - x\sin y } & \ {x\cos y} & \end{vmatrix}=x

Functions are independent in some neighborhood of any point of the region D={(x,y):x0}D=\left \{ \left ( x,y \right ):x\neq{0} \right \} .

b)

J=(u,v)(x,y)= 11 yx2 1x+1=1x+1+yx2J=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix} \ { 1 } & { 1} \\ \ { \frac{- y }{x^{2}} } & \ {\frac{1}{x}+1} & \end{vmatrix}=\frac{1}{x}+1+ { \frac{ y }{x^{2}} }\\

Functions are independent in some neighborhood of any point of the region D={(x,y):x0,1x+1+yx2 0}D=\left \{ \left ( x,y \right ):x\neq0, \frac{1}{x}+1+{ \frac{ y }{x^{2}}\ \neq{0} } \right \} .

c)

J=(u,v)(x,y)= 12 2x4y+3 8y4x6=8y4x6+2(2x4y+3)=0J=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix} \ {1 } & {-2} \\ \ {2x-4y+3 } & \ {8y-4x-6} & \end{vmatrix}= 8y-4x-6+2(2x-4y+3)=0

  Functions are dependent.

d)

J=(u,v)(x,y)= 12 2x+2y1 2y+2x==2y+2x4x4y+2=2x6y+2J=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix} \ {1 } & { 2} \\ \ {2x+2y-1 } & \ {-2y+2x} & \end{vmatrix}=\\= -2y+2x-4x-4y+2=-2x-6y+2

Functions are independent in some neighborhood of any point of the region

D={(x,y):2x6y+20}.D=\left \{ \left ( x,y \right ):-2x-6y+2\neq0 \right \}.

 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS