ANSWER
Functions continuously differentiable are independent in the domain D D D if the Jacobian J = ∂ ( u , v ) ∂ ( x , y ) = ∣ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∣ J=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix}
\frac{\partial u }{\partial x} &\frac{\partial u }{\partial y} &\\
\frac{\partial v }{\partial x} & \frac{\partial v }{\partial y} &
\end{vmatrix} J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ ∣ is nonzero.
a)
J = ∂ ( u , v ) ∂ ( x , y ) = ∣ cos y sin y − x sin y x cos y ∣ = x J=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix}
\ { \cos y } & {\sin y} \\
\ { - x\sin y } & \ {x\cos y} &
\end{vmatrix}=x J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∣ cos y − x sin y sin y x cos y ∣ ∣ = x
Functions are independent in some neighborhood of any point of the region D = { ( x , y ) : x ≠ 0 } D=\left \{ \left ( x,y \right ):x\neq{0} \right \} D = { ( x , y ) : x = 0 } .
b)
J = ∂ ( u , v ) ∂ ( x , y ) = ∣ 1 1 − y x 2 1 x + 1 ∣ = 1 x + 1 + y x 2 J=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix}
\ { 1 } & { 1} \\
\ { \frac{- y }{x^{2}} } & \ {\frac{1}{x}+1} &
\end{vmatrix}=\frac{1}{x}+1+ { \frac{ y }{x^{2}} }\\ J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∣ 1 x 2 − y 1 x 1 + 1 ∣ ∣ = x 1 + 1 + x 2 y
Functions are independent in some neighborhood of any point of the region D = { ( x , y ) : x ≠ 0 , 1 x + 1 + y x 2 ≠ 0 } D=\left \{ \left ( x,y \right ):x\neq0, \frac{1}{x}+1+{ \frac{ y }{x^{2}}\ \neq{0} } \right \} D = { ( x , y ) : x = 0 , x 1 + 1 + x 2 y = 0 } .
c)
J = ∂ ( u , v ) ∂ ( x , y ) = ∣ 1 − 2 2 x − 4 y + 3 8 y − 4 x − 6 ∣ = 8 y − 4 x − 6 + 2 ( 2 x − 4 y + 3 ) = 0 J=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix}
\ {1 } & {-2} \\
\ {2x-4y+3 } & \ {8y-4x-6} &
\end{vmatrix}= 8y-4x-6+2(2x-4y+3)=0 J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∣ 1 2 x − 4 y + 3 − 2 8 y − 4 x − 6 ∣ ∣ = 8 y − 4 x − 6 + 2 ( 2 x − 4 y + 3 ) = 0
Functions are dependent.
d)
J = ∂ ( u , v ) ∂ ( x , y ) = ∣ 1 2 2 x + 2 y − 1 − 2 y + 2 x ∣ = = − 2 y + 2 x − 4 x − 4 y + 2 = − 2 x − 6 y + 2 J=\frac{\partial (u,v)}{\partial (x,y) }=\begin{vmatrix}
\ {1 } & { 2} \\
\ {2x+2y-1 } & \ {-2y+2x} &
\end{vmatrix}=\\= -2y+2x-4x-4y+2=-2x-6y+2 J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∣ 1 2 x + 2 y − 1 2 − 2 y + 2 x ∣ ∣ = = − 2 y + 2 x − 4 x − 4 y + 2 = − 2 x − 6 y + 2
Functions are independent in some neighborhood of any point of the region
D = { ( x , y ) : − 2 x − 6 y + 2 ≠ 0 } . D=\left \{ \left ( x,y \right ):-2x-6y+2\neq0 \right \}. D = { ( x , y ) : − 2 x − 6 y + 2 = 0 } .
Comments