Determine which of the following
pairs of functions are independent. Using the Jacobian matrix
a) u= x cos y and v=x sin y;
b)u= x + y and v= y/x+y;
c)u=x-2y and v=x^2 +4y^2-4xy+3x-6y;
d)u= x + 2y and v= x^2-y^2+2xy-x
ANSWER
Functions continuously differentiable are independent in the domain "D" if the Jacobian "J=\\frac{\\partial (u,v)}{\\partial (x,y) }=\\begin{vmatrix}\n\\frac{\\partial u }{\\partial x} &\\frac{\\partial u }{\\partial y} &\\\\\n \n \\frac{\\partial v }{\\partial x} & \\frac{\\partial v }{\\partial y} &\n\n\\end{vmatrix}" is nonzero.
a)
"J=\\frac{\\partial (u,v)}{\\partial (x,y) }=\\begin{vmatrix}\n\\ { \\cos y } & {\\sin y} \\\\\n\n \n \\ { - x\\sin y } & \\ {x\\cos y} &\n\n\\end{vmatrix}=x"
Functions are independent in some neighborhood of any point of the region "D=\\left \\{ \\left ( x,y \\right ):x\\neq{0} \\right \\}" .
b)
"J=\\frac{\\partial (u,v)}{\\partial (x,y) }=\\begin{vmatrix}\n\\ { 1 } & { 1} \\\\\n\n \n \\ { \\frac{- y }{x^{2}} } & \\ {\\frac{1}{x}+1} &\n\n\\end{vmatrix}=\\frac{1}{x}+1+ { \\frac{ y }{x^{2}} }\\\\"
Functions are independent in some neighborhood of any point of the region "D=\\left \\{ \\left ( x,y \\right ):x\\neq0, \\frac{1}{x}+1+{ \\frac{ y }{x^{2}}\\ \\neq{0} } \\right \\}" .
c)
"J=\\frac{\\partial (u,v)}{\\partial (x,y) }=\\begin{vmatrix}\n\\ {1 } & {-2} \\\\\n\n \n \\ {2x-4y+3 } & \\ {8y-4x-6} &\n\n\\end{vmatrix}= 8y-4x-6+2(2x-4y+3)=0"
Functions are dependent.
d)
"J=\\frac{\\partial (u,v)}{\\partial (x,y) }=\\begin{vmatrix}\n\\ {1 } & { 2} \\\\\n\n \n \\ {2x+2y-1 } & \\ {-2y+2x} &\n\n\\end{vmatrix}=\\\\= -2y+2x-4x-4y+2=-2x-6y+2"
Functions are independent in some neighborhood of any point of the region
"D=\\left \\{ \\left ( x,y \\right ):-2x-6y+2\\neq0 \\right \\}."
Comments
Leave a comment