Let F(x,y)=2x^2+3sin y and let G(x,y)=e^x-2y.Compute the Jacobian determinant d(F ,G)/d(x,y)
F(x,y)=2x2+3sinyG(x,y)=ex−2yF(x,y)=2x^2+3\sin y \\G(x,y)=e^x-2yF(x,y)=2x2+3sinyG(x,y)=ex−2y
∂(F,G)∂(x,y)=∣∂F∂x∂F∂y∂G∂x∂G∂y∣\dfrac{\partial (F,G)}{\partial (x,y)}=\begin{vmatrix} \dfrac{\partial F}{\partial x}&\dfrac{\partial F}{\partial y} \\ \dfrac{\partial G}{\partial x}&\dfrac{\partial G}{\partial y}\end{vmatrix}∂(x,y)∂(F,G)=∣∣∂x∂F∂x∂G∂y∂F∂y∂G∣∣
=∣∂(2x2+3siny)∂x∂(2x2+3siny)∂y∂(ex−2y)∂x∂(ex−2y)∂y∣=\begin{vmatrix} \dfrac{\partial (2x^2+3\sin y)}{\partial x}&\dfrac{\partial (2x^2+3\sin y)}{\partial y} \\ \dfrac{\partial (e^x-2y)}{\partial x}&\dfrac{\partial (e^x-2y)}{\partial y}\end{vmatrix}=∣∣∂x∂(2x2+3siny)∂x∂(ex−2y)∂y∂(2x2+3siny)∂y∂(ex−2y)∣∣
=∣4x3cosyex−2∣=−8x−3excosy=\begin{vmatrix} 4x&3\cos y \\ e^x&-2\end{vmatrix} \\=-8x-3e^x\cos y=∣∣4xex3cosy−2∣∣=−8x−3excosy
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment