Let F(x,y)=2x^2+3sin y and let G(x,y)=e^x-2y.Compute the Jacobian determinant d(F ,G)/d(x,y)
"F(x,y)=2x^2+3\\sin y \n\\\\G(x,y)=e^x-2y"
"\\dfrac{\\partial (F,G)}{\\partial (x,y)}=\\begin{vmatrix} \\dfrac{\\partial F}{\\partial x}&\\dfrac{\\partial F}{\\partial y}\n\\\\ \\dfrac{\\partial G}{\\partial x}&\\dfrac{\\partial G}{\\partial y}\\end{vmatrix}"
"=\\begin{vmatrix} \\dfrac{\\partial (2x^2+3\\sin y)}{\\partial x}&\\dfrac{\\partial (2x^2+3\\sin y)}{\\partial y}\n\\\\ \\dfrac{\\partial (e^x-2y)}{\\partial x}&\\dfrac{\\partial (e^x-2y)}{\\partial y}\\end{vmatrix}"
"=\\begin{vmatrix} 4x&3\\cos y\n\\\\ e^x&-2\\end{vmatrix}\n\\\\=-8x-3e^x\\cos y"
Comments
Leave a comment