Answer to Question #297329 in Calculus for Goatie

Question #297329

Let F(x,y)=2x^2+3sin y and let G(x,y)=e^x-2y.Compute the Jacobian determinant d(F ,G)/d(x,y)

1
Expert's answer
2022-02-14T16:39:48-0500

Solution:

F(x,y)=2x2+3sinyG(x,y)=ex2yF(x,y)=2x^2+3\sin y \\G(x,y)=e^x-2y

(F,G)(x,y)=FxFyGxGy\dfrac{\partial (F,G)}{\partial (x,y)}=\begin{vmatrix} \dfrac{\partial F}{\partial x}&\dfrac{\partial F}{\partial y} \\ \dfrac{\partial G}{\partial x}&\dfrac{\partial G}{\partial y}\end{vmatrix}

=(2x2+3siny)x(2x2+3siny)y(ex2y)x(ex2y)y=\begin{vmatrix} \dfrac{\partial (2x^2+3\sin y)}{\partial x}&\dfrac{\partial (2x^2+3\sin y)}{\partial y} \\ \dfrac{\partial (e^x-2y)}{\partial x}&\dfrac{\partial (e^x-2y)}{\partial y}\end{vmatrix}

=4x3cosyex2=8x3excosy=\begin{vmatrix} 4x&3\cos y \\ e^x&-2\end{vmatrix} \\=-8x-3e^x\cos y


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment