dx2d2y=1−x2⇒dxdy=x−3x3+C
Given, tangent y=2–x
So, slope of tangent =m=−1
At (1, 1), m=dxdy
⇒x−3x3+C=m⇒1−31+C=−1⇒C=−35
So, dxdy=x−3x3−35
Also, at any point, m=dxdy
x−3x3−35=−1⇒x=−2,x=1
For x=−2:y=2−x=2+2=4
For x=1:y=2−x=2−1=1
Points are (-2,4), (1,1).
Consider dxdy=x−3x3−35 again.
On integrating:
y=x2−12x4−35x+C1
Put (1,1) in this and solve for C1
1=1−121−35+C1⇒C1=47∴y=x2−12x4−35x+47
Comments