At any point (x, y) on a curve, π^2π¦/ππ₯^2 = 1-x^2
, and an equation of the tangent line to the
curve at the point (1, 1) is y = 2 β x. Find an equation of the curve.
"\\dfrac{d^2y}{dx^2}=1-x^2\n\\\\\\Rightarrow \\dfrac{dy}{dx}=x-\\dfrac{x^3}3+C"
Given, tangent "y = 2 \u2013 x"
So, slope of tangent "=m=-1"
At (1, 1), "m=\\dfrac{dy}{dx}"
"\\Rightarrow x-\\dfrac{x^3}3+C=m\n\\\\\\Rightarrow 1-\\dfrac13+C=-1\n\\\\ \\Rightarrow C=-\\dfrac53"
So, "\\dfrac{dy}{dx}=x-\\dfrac{x^3}3-\\dfrac53"
Also, at any point, "m=\\dfrac{dy}{dx}"
"x-\\dfrac{x^3}3-\\dfrac53=-1\n\\\\ \\Rightarrow x=-2,x=1"
For "x=-2: y=2-x=2+2=4"
For "x=1:y=2-x=2-1=1"
Points are (-2,4), (1,1).
Consider "\\dfrac{dy}{dx}=x-\\dfrac{x^3}3-\\dfrac53" again.
On integrating:
"y=x^2-\\dfrac{x^4}{12}-\\dfrac53x+C_1"
Put (1,1) in this and solve for C1
"1=1-\\dfrac{1}{12}-\\dfrac53+C_1\n\\\\\\Rightarrow C_1=\\dfrac74\n\\\\ \\therefore y=x^2-\\dfrac{x^4}{12}-\\dfrac53x+\\dfrac74"
Comments
Leave a comment