dx2d2yβ=1βx2βdxdyβ=xβ3x3β+C
Given, tangent y=2βx
So, slope of tangent =m=β1
At (1, 1), m=dxdyβ
βxβ3x3β+C=mβ1β31β+C=β1βC=β35β
So, dxdyβ=xβ3x3ββ35β
Also, at any point, m=dxdyβ
xβ3x3ββ35β=β1βx=β2,x=1
For x=β2:y=2βx=2+2=4
For x=1:y=2βx=2β1=1
Points are (-2,4), (1,1).
Consider dxdyβ=xβ3x3ββ35β again.
On integrating:
y=x2β12x4ββ35βx+C1β
Put (1,1) in this and solve for C1
1=1β121ββ35β+C1ββC1β=47ββ΄y=x2β12x4ββ35βx+47β
Comments
Leave a comment