Question #294828

At any point (x, y) on a curve, 𝑑^2𝑦/𝑑𝑥^2 = 1-x^2


, and an equation of the tangent line to the


curve at the point (1, 1) is y = 2 – x. Find an equation of the curve.

1
Expert's answer
2022-02-08T07:28:01-0500

Solution:

d2ydx2=1x2dydx=xx33+C\dfrac{d^2y}{dx^2}=1-x^2 \\\Rightarrow \dfrac{dy}{dx}=x-\dfrac{x^3}3+C

Given, tangent y=2xy = 2 – x

So, slope of tangent =m=1=m=-1

At (1, 1), m=dydxm=\dfrac{dy}{dx}

xx33+C=m113+C=1C=53\Rightarrow x-\dfrac{x^3}3+C=m \\\Rightarrow 1-\dfrac13+C=-1 \\ \Rightarrow C=-\dfrac53

So, dydx=xx3353\dfrac{dy}{dx}=x-\dfrac{x^3}3-\dfrac53

Also, at any point, m=dydxm=\dfrac{dy}{dx}

xx3353=1x=2,x=1x-\dfrac{x^3}3-\dfrac53=-1 \\ \Rightarrow x=-2,x=1

For x=2:y=2x=2+2=4x=-2: y=2-x=2+2=4

For x=1:y=2x=21=1x=1:y=2-x=2-1=1

Points are (-2,4), (1,1).

Consider dydx=xx3353\dfrac{dy}{dx}=x-\dfrac{x^3}3-\dfrac53 again.

On integrating:

y=x2x41253x+C1y=x^2-\dfrac{x^4}{12}-\dfrac53x+C_1

Put (1,1) in this and solve for C1

1=111253+C1C1=74y=x2x41253x+741=1-\dfrac{1}{12}-\dfrac53+C_1 \\\Rightarrow C_1=\dfrac74 \\ \therefore y=x^2-\dfrac{x^4}{12}-\dfrac53x+\dfrac74


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS