The line 𝑦=𝑥−5 is tangent to the curve 𝑦=𝑥^2−9𝑥−𝑘
Find the value of 𝑘.
The slope of the tangnet line y=x−5y=x-5y=x−5 is m=1m=1m=1.
y=x2−9x−ky=x^2-9x-ky=x2−9x−k , dydx=2x−9=1\frac{dy}{dx} =2x-9=1dxdy=2x−9=1
We have 2x−9=12x-9=12x−9=1 ,
2x=102x=102x=10 ,
x=5x=5x=5.
Then y=x−5=0y=x-5=0y=x−5=0.
So, The line y=x−5y=x-5y=x−5 is tangent to the curve y=x2−9x−ky=x^2-9x-ky=x2−9x−k at the point (5, 0)(5, \ 0)(5, 0) .
0=52−9⋅5−k0=5^2-9\cdot 5-k0=52−9⋅5−k
k=−20k=-20k=−20
Answer: k=−20k=-20k=−20
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments