Question #288865

Let f(x, y) ={ y³ /x² + y² if (x, y) ≠(0, 0) and 0 otherwise


Show that f is continuous but not differentiable at (0, 0).


1
Expert's answer
2022-01-25T12:56:53-0500

To show that the function


f(x,y)={y3x2+y2    (x,y)(0,0)0          (x,y)=(0,0)f(x,y)=\begin{cases} \frac{y^3}{x^2+y^2}~~~~(x,y) \neq (0,0)\\ 0~~~~~~~~~~(x,y)=(0,0)\end{cases}

is continuous at (0,0)(0,0) , we must show that lim9x,y)(0,0)f(x,y)=f(0,0)\lim_{9x,y)\to (0,0) }f(x,y)=f(0,0)

By definition, f(0,0)=0f(0,0)=0.

Let y=mxy=mx . Thus,

lim(x,y)(0,0)f(x,y)=limx0f(x,mx)=limx0(mx)3x2+(mx)2=limx0m3x1+m2=0\lim_{(x,y)\to (0,0)} f(x,y)=\lim_{x \to 0}f(x,mx)=\lim_{x\to 0} \frac{(mx)^3}{x^2+(mx)^2}=\lim_{x \to 0} \frac{m^3x}{1+m^2}=0

Thus the limit is 0 which is equal to f(0,0)f(0,0)

Hence, f(x,y)f(x,y) is continuous at (0,0)(0,0)


Now, to show that it is not differentiable at (0,0)

Differentiating with respect to x yields:


fx(x,y)=2xy3(x2+y2)2f_x(x,y)=\frac{-2xy^3}{(x^2+y^2)^2}

Now, fx(0,0)=0f_x(0,0)=0 , but

Consider the limits along the straight line y=mxy=mx

lim(x,y)(0,0)fx(x,y)=limx02x(mx)3(x2+(mx)2)2=limx02m(1+m2)2=2m(1+m2)2\lim_{(x,y)\to (0,0)}f_x(x,y)=\lim_{x\to 0} \frac{-2x(mx)^3}{(x^2+(mx)^2)^2}= \lim_{x\to 0}\frac{-2m}{(1+m^2)^2}=\frac{-2m}{(1+m^2)^2}


Since the limit along a straight line depends on the slope of the line. Therefore, the two-variable limit does not exist at (0, 0). Since the limit does not exist, this shows that the partial derivative of the function with respect to x exist but is not continuous.This shows that the function is not differentiable.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS