Answer to Question #288850 in Calculus for Pankaj

Question #288850

The function f(x, y) ={x²y/x⁴ +y² , (x, y) ≠0 and 0 , (x, y) =0 }is not continuous at (0,0).


Say true or false.


1
Expert's answer
2022-01-20T10:52:37-0500

Evaluate lim(x,y)(0,0)f(x,y)\lim\limits_{(x,y)\to(0,0)}f(x, y) along path y=mxy=mx


lim(x,mx)(0,0)x2(mx)x4+(mx)2=lim(x,mx)(0,0)mxx2+m2=0\lim\limits_{(x,mx)\to(0,0)}\dfrac{x^2(mx)}{x^4+(mx)^2}=\lim\limits_{(x,mx)\to(0,0)}\dfrac{mx}{x^2+m^2}=0

Evaluate lim(x,y)(0,0)f(x,y)\lim\limits_{(x,y)\to(0,0)}f(x, y) along path y=kx2y=kx^2


lim(x,kx2)(0,0)x2(kx2)x4+(kx2)2=lim(x,kx2)(0,0)k1+k2=k1+k20\lim\limits_{(x,kx^2)\to(0,0)}\dfrac{x^2(kx^2)}{x^4+(kx^2)^2}=\lim\limits_{(x,kx^2)\to(0,0)}\dfrac{k}{1+k^2}=\dfrac{k}{1+k^2}\not=0

Therefore lim(x,y)(0,0)f(x,y)\lim\limits_{(x,y)\to(0,0)}f(x, y) does not exist.

Therefore the function f(x,y)f(x, y) is not continuous at (0,0).(0,0).

The statement is False.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment