Evaluate (x,y)→(0,0)limf(x,y) along path y=mx
(x,mx)→(0,0)limx4+(mx)2x2(mx)=(x,mx)→(0,0)limx2+m2mx=0 Evaluate (x,y)→(0,0)limf(x,y) along path y=kx2
(x,kx2)→(0,0)limx4+(kx2)2x2(kx2)=(x,kx2)→(0,0)lim1+k2k=1+k2k=0 Therefore (x,y)→(0,0)limf(x,y) does not exist.
Therefore the function f(x,y) is not continuous at (0,0).
The statement is False.
Comments
Leave a comment