Question #288008

Determine the value of a and b so that lim(x→0) (asin2x-bsinx/x³)=1


1
Expert's answer
2022-01-17T18:22:47-0500
limx0asin(2x)bsinxx3=[00]\lim\limits_{x\to 0}\dfrac{a\sin(2x)-b\sin x}{x^3}=[\dfrac{0}{0}]

=limx0(asin(2x)bsinx)(x3)=\lim\limits_{x\to 0}\dfrac{(a\sin(2x)-b\sin x)'}{(x^3)'}

=limx02acos(2x)bcosx3x2=[00]=\lim\limits_{x\to 0}\dfrac{2a\cos(2x)-b\cos x}{3x^2}=[\dfrac{0}{0}]


2acos(2(0))bcos(0)=0=>2a=b2a\cos(2(0))-b\cos (0)=0=>2a=b

limx0bcos(2x)bcosx3x2=[00]\lim\limits_{x\to 0}\dfrac{b\cos(2x)-b\cos x}{3x^2}=[\dfrac{0}{0}]

=limx0(bcos(2x)bcosx)(3x2)=\lim\limits_{x\to 0}\dfrac{(b\cos(2x)-b\cos x)'}{(3x^2)'}

=limx02bsin(2x)+bsinx6x=[00]=\lim\limits_{x\to 0}\dfrac{-2b\sin(2x)+b\sin x}{6x}=[\dfrac{0}{0}]


=limx0(2bsin(2x)+bsinx)(6x)=\lim\limits_{x\to 0}\dfrac{(-2b\sin(2x)+b\sin x)'}{(6x)'}

=limx04bcos(2x)+bcosx6=\lim\limits_{x\to 0}\dfrac{-4b\cos(2x)+b\cos x}{6}

=4bcos(2(0))+bcos(0)6=\dfrac{-4b\cos(2(0))+b\cos (0)}{6}

=b2=1=>b=2,a=1=-\dfrac{b}{2}=1=>b=-2, a=-1

limx0sin(2x)+2sinxx3=1\lim\limits_{x\to 0}\dfrac{-\sin(2x)+2\sin x}{x^3}=1

a=1,b=2a=-1, b=-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS