Determine the value of a and b so that lim(x→0) (asin2x-bsinx/x³)=1
"=\\lim\\limits_{x\\to 0}\\dfrac{(a\\sin(2x)-b\\sin x)'}{(x^3)'}"
"=\\lim\\limits_{x\\to 0}\\dfrac{2a\\cos(2x)-b\\cos x}{3x^2}=[\\dfrac{0}{0}]"
"\\lim\\limits_{x\\to 0}\\dfrac{b\\cos(2x)-b\\cos x}{3x^2}=[\\dfrac{0}{0}]"
"=\\lim\\limits_{x\\to 0}\\dfrac{(b\\cos(2x)-b\\cos x)'}{(3x^2)'}"
"=\\lim\\limits_{x\\to 0}\\dfrac{-2b\\sin(2x)+b\\sin x}{6x}=[\\dfrac{0}{0}]"
"=\\lim\\limits_{x\\to 0}\\dfrac{-4b\\cos(2x)+b\\cos x}{6}"
"=\\dfrac{-4b\\cos(2(0))+b\\cos (0)}{6}"
"=-\\dfrac{b}{2}=1=>b=-2, a=-1"
"\\lim\\limits_{x\\to 0}\\dfrac{-\\sin(2x)+2\\sin x}{x^3}=1"
"a=-1, b=-2"
Comments
Leave a comment