Reduce the quadratic form X2+3Y2+3Z2-2yz to the canonical form through orthogonal transformation
We shall reduce the quadratic form "x^{2}+3y^{2}+3z^{2}-2yz" to the canonical form through the orthogonal transformation.
NOTE: WE SHALL RE-REPRESENT THE VARAIBALE x, y and z TO VARIABLES "x_{1},x_{2}\\hspace{0.1cm}and\\hspace{0.1cm}x_{3}" respectively.
NOW, using "x_{1},x_{2}\\hspace{0.1cm}and\\hspace{0.1cm}x_{3}"
"\\displaystyle Q(x)=x_{1}^{2}+3x_{2}^{2}+3x_{3}^{2}-2x_{2}x_{3}"
The symmetric matrix A with the given quadratic form is
"A=" "\\begin{bmatrix}\n 1 & 0 & 0 \\\\\n 0 & 3 & -1\\\\\n 0 & -1 & 3 \n\\end{bmatrix}"
The characteristic equation of A is
"\\mid(A-\\lambda I)\\mid=\\lambda^{3}-7\\lambda^{2}+14\\lambda-8=0\\\\\\implies \\lambda=1,2,4"
The corresponding eigen values are:
for "\\lambda_{1}=1,\\hspace{0.2cm}is\\hspace{0.2cm}X_{1}=k\\begin{bmatrix}\n 1 \\\\\n 0\\\\\n 0 \n\\end{bmatrix}"
for "\\lambda_{2}=2,\\hspace{0.2cm}is\\hspace{0.2cm}X_{2}=k\\begin{bmatrix}\n 0 \\\\\n 1\\\\\n 1\n\\end{bmatrix}"
for "\\lambda_{3}=1,\\hspace{0.2cm}is\\hspace{0.2cm}X_{3}=k\\begin{bmatrix}\n 0 \\\\\n 1\\\\\n -1\n\\end{bmatrix}"
Clearly, the eigen vectors "X_{1}=\\begin{bmatrix}\n 1 \\\\\n 0\\\\\n 0 \n\\end{bmatrix}" , "X_{2}=\\begin{bmatrix}\n 0 \\\\\n 1\\\\\n 1\n\\end{bmatrix}" and "X_{3}=\\begin{bmatrix}\n 0 \\\\\n 1\\\\\n -1\n\\end{bmatrix}" are linearly independent and orthogonal.
The normalized vectors of the above eigen vextors "X_{1}, X_{2},X_{3}" are:
"e_{1}=\\frac{X_{1}}{\\mid\\mid X_{1}\\mid\\mid}= \\begin{bmatrix}\n 1 \\\\\n 0\\\\\n 0 \n\\end{bmatrix}" , "\\displaystyle e_{2}=\\frac{X_{2}}{\\mid\\mid X_{2}\\mid\\mid}= \\begin{bmatrix}\n 0 \\\\\n \\frac{1}{\\sqrt2}\\\\\n \\frac{1}{\\sqrt2} \n\\end{bmatrix}" , "\\displaystyle e_{3}=\\frac{X_{3}}{\\mid\\mid X_{3}\\mid\\mid}= \\begin{bmatrix}\n 0 \\\\\n \\frac{1}{\\sqrt2}\\\\\n -\\frac{1}{\\sqrt2} \n\\end{bmatrix}"
Therefore,
The normalized model matrix is
"\\displaystyle \\bar{p}=\\begin{bmatrix}\n 1 & 0 & 0 \\\\\n 0 & \\frac{1}{\\sqrt{2}} &\\frac{1}{\\sqrt{2}} \\\\ \n 0 & \\frac{1}{\\sqrt{2}} & -\\frac{1}{\\sqrt{2}}\n\\end{bmatrix}" and "\\bar{p}^{-1}=\\bar{p}^{T}=\\frac{1}{\\sqrt{2}}\\displaystyle \\begin{bmatrix}\n \\sqrt{2} & 0 & 0 \\\\\n 0 & 1 & 1 \\\\ \n 0 & 1 & - 1\n\\end{bmatrix}"
"\\bar{p}^{-1}A\\bar{p}= \\frac{1}{\\sqrt{2}}\\displaystyle \\begin{bmatrix}\n \\sqrt{2} & 0 & 0 \\\\\n 0 & 1 & 1 \\\\ \n 0 & 1 & - 1\n\\end{bmatrix}\\begin{bmatrix}\n \\ 1 & 0 & 0 \\\\\n 0 & 3 & -1 \\\\ \n 0 & -1 & 3\n\\end{bmatrix}\\begin{bmatrix}\n 1 & 0 & 0 \\\\\n 0 & \\frac{1}{\\sqrt{2}} &\\frac{1}{\\sqrt{2}} \\\\ \n 0 & \\frac{1}{\\sqrt{2}} & -\\frac{1}{\\sqrt{2}}\n\\end{bmatrix}"
"=\\begin{bmatrix}\n \\ 1 & 0 & 0 \\\\\n 0 & 1 & 1 \\\\ \n 0 & 1 & -1\n\\end{bmatrix}=D"
We know that the quadratic form is "Q=X^{T}AX" where "X=\\bar{P}Y"
then,
"Q=(\\bar{P}Y)A(\\bar{P}Y)"
"=(Y^{T}\\bar{P}^{T})A(\\bar{P}Y)\\\\=Y^{T}(P^{T}A\\bar{P})Y\\\\=Y^{T}(\\bar{P}^{-1}A\\bar{P})Y\\hspace{0.3cmsince\\hspace{0.3cm}}\\bar{P}^{T}=\\bar{P}^{-1}\\\\=Y^{T}DY"
Therefore, the canonical form
"=\\begin{bmatrix}\n y_{1} & y_{2} &y_{3} \\\\\n \n\\end{bmatrix} \\begin{bmatrix}\n \\ 1 & 0 & 0 \\\\\n 0 & 2 & 0 \\\\ \n 0 & 0 & 4\n\\end{bmatrix} \\begin{bmatrix}\n \\ y_{1} \\\\\n y_{2} \\\\ \n y_{3} \n\\end{bmatrix}"
"= y_{1}^{2}+2y_{2}^{2}+4y_{3}^{2}"
which gives the canonical form.
Comments
Leave a comment