Question #288864

Check whether the limit of the function


f(x, y) = 4x²y/ x^10 +3y² exist as (x, y) ➡(0, 0)


1
Expert's answer
2022-01-24T18:57:07-0500

Consider the power curve x=t,y=at8 approaching the origin as t0+.The limit along this curve can attain any value by varying the parameter a:lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)4x2yx10+3y2=limt0+4t2at8t10+3(at8)2=limt0+4at10t10+3a2t16=limt0+(t10t10×4a1+3a2t6)=limt0+4a1+3a2t6=4aThus, the multivariable limit does not exist.\displaystyle \quad\text{Consider the power curve }x=t, y=at^8 \text{ approaching the origin as }t\rightarrow 0^+.\\ \text{The limit along this curve can attain any value by varying the parameter a:}\\ \lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{(x,y)\rightarrow(0,0)}\frac{4x^2y}{x^{10}+3y^2}=\lim_{t\rightarrow 0^+}\frac{4t^2at^8}{t^{10}+3(at^8)^2}=\lim_{t\rightarrow 0^+}\frac{4at^{10}}{t^{10}+3a^2t^{16}}\\ \qquad\qquad\qquad\quad=\lim_{t\rightarrow 0^+}\left(\frac{t^{10}}{t^{10}}\times\frac{4a}{1+3a^2t^6}\right)=\lim_{t\rightarrow 0^+}\frac{4a}{1+3a^2t^6}=4a\\ \text{Thus, the multivariable limit does not exist.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS