Question #288854

The range of the function f(x, y) =√81-9x²-9y² is [0, 8] . Say true or false.


1
Expert's answer
2022-01-24T16:45:27-0500
f(x,y)=819x29y2f(x, y)=\sqrt{81-9x^2-9y^2}

x2+y20,x,yRx^2+y^2\geq0, x, y\in \R

9x29y20-9x^2-9y^2\leq0

819x29y28181-9x^2-9y^2\leq81

We need that 819x29y2081-9x^2-9y^2\geq 0

Then


0819x29y2810\leq\sqrt{81-9x^2-9y^2}\leq\sqrt{81}

0819x29y290\leq\sqrt{81-9x^2-9y^2}\leq9

The range of the function f(x,y)f(x, y) is [0,9].[0,9].

Therefore the statement that the range of the function

f(x,y)=819x29y2f(x, y)=\sqrt{81-9x^2-9y^2}

is [0,8][0, 8] is False.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS