f(x,y)=81−9x2−9y2
x2+y2≥0,x,y∈R
−9x2−9y2≤0
81−9x2−9y2≤81We need that 81−9x2−9y2≥0
Then
0≤81−9x2−9y2≤81
0≤81−9x2−9y2≤9The range of the function f(x,y) is [0,9].
Therefore the statement that the range of the function
f(x,y)=81−9x2−9y2 is [0,8] is False.
Comments