Question #287307

1. Evaluate the limit by first recognizing the sum as a Reimann Sum for a function defined on [0,1] limit as n tends to infinity 1/n (the root of 1/n + root of 2/n + root of 3/n +....+ root of n/n)

2. If f prime is continuous on [a,b], show that 2* the integral from a to b of f(x) f prime(x) dx= f(b) square minus f(a) square.


1
Expert's answer
2022-01-14T08:07:17-0500

Solution:

1.

limn1n(1n+2n+3n++nn)=limn1ni=1nin=limni=1nin1n=limni=1n0+iΔxΔx Where Δx=1n Note that limni=1nf(a+iΔx)Δx=abf(x)dx Here a=0 and Δx=ban=1n Therefore, a=0b=1f(x)=x\begin{aligned} &\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{2}{n}}+\sqrt{\frac{3}{n}}+\ldots+\sqrt{\frac{n}{n}}\right) \\ &=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{i}{n}} \\ &=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\frac{i}{n}} \cdot \frac{1}{n} \\ &=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{0+i \Delta x} \cdot \Delta x \\ &\text { Where } \Delta x=\frac{1}{n} \\ &\text { Note that } \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f(a+i \Delta x) \cdot \Delta x=\int_{a}^{b} f(x) d x \\ &\text { Here } a=0 \\ &\text { and } \Delta x=\frac{b-a}{n}=\frac{1}{n} \\ &\text { Therefore, } a=0 \Rightarrow b=1\\ &f(x)=\sqrt{x} \end{aligned}

So, abf(x)dx=01xdx\int_{a}^{b} f(x) d x=\int_{0}^{1} \sqrt x d x

=[x3/23/2]01=23(10)=23=[\dfrac{x^{3/2}}{3/2}]_0^1 \\=\dfrac23(1-0) \\=\dfrac23


2. We know that,

ddxf2(x)=2f(x)f(x)\dfrac{d}{dx} f^2(x) = 2f(x)f'(x) ...(i)

Now, consider

2abf(x)f(x)dx=abddxf2(x) [Using (i)]=f2(x)x=ax=b2∫_a^b f(x) f'(x) dx \\=∫_a^b\dfrac{d}{dx} f^2(x) \ [Using\ (i)] \\=f^2(x) |_{x=a}^{x=b} [Using Fundamental theorem of calculus]

=f2(b)f2(a).=f^2(b) - f^2(a).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS