find the limit lim x→0 x^2 cos 1/x.
limx→0(x2∗cos(1x))\lim_{x\to0}(x^2*cos({\frac 1 x}))limx→0(x2∗cos(x1))
∀a:−1≤cos(a)≤1\forall a:-1≤cos(a)≤1∀a:−1≤cos(a)≤1
limx→0x2=0 ⟹ limx→0(x2∗cos(1x))=0∗b\lim_{x\to0}x^2=0\implies \lim_{x\to0}(x^2*cos({\frac 1 x}))=0*blimx→0x2=0⟹limx→0(x2∗cos(x1))=0∗b where −1≤b≤1 ⟹ limx→0(x2∗cos(1x))=0-1≤b≤1\implies \lim_{x\to0}(x^2*cos({\frac 1 x}))=0−1≤b≤1⟹limx→0(x2∗cos(x1))=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments